Game Development

2D Adventure Games, 3D Maths and Physics, Game Mechanics,
Animations, and 3D Game Development

n

f) N

w'A ([
MARIJO TRKULJA %;!;

G#dot 3D

Game Development

2D Adventure Games, 3D Maths and Physics, Game Mechanics,
Animations, and 3D Game Development

L

MARIJO TRKULJA

Godot
3D Game
Development

2D Adventure Games, 3D Maths and
Physics, Game Mechanics,
Animations, and 3D Game Development

Marijo Trkulja

www.bpbonline.com

http://www.bpbonline.com

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor BPB Online or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, BPB
Online cannot guarantee the accuracy of this information.

Group Product Manager: Marianne Conor
Publishing Product Manager: Eva Brawn
Senior Editor: Connell

Content Development Editor: Melissa Monroe
Technical Editor: Anne Stokes

Copy Editor: Joe Austin

Language Support Editor: Justin Baldwin
Project Coordinator: Tyler Horan
Proofreader: Khloe Styles

Indexer: V. Krishnamurthy

Production Designer: Malcolm D'Souza

Marketing Coordinator: Kristen Kramer

First published: 2023

Published by BPB Online
WeWork, 119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-5551-224-6

www.bpbonline.com

http://www.bpbonline.com

Dedicated to

Aryan ancestors

I1epyH Pood Mokow

About the Author

Marijo is a rare author with realized writing potential in different areas and
languages. Formally, he has a college technical education and a master's in
economics. His sphere of interest is ancient Arian history, the technology of
the past and future, and recently (from 2019) game development. He is a
writer of many well-known books about the Godot game engine.

Marijo promotes peaceful video games where the player can learn and have
fun. He also believes in the power of nature and writes about it in "Living in
nature Marijo Trkulja." When people ask for his teachings, he says to read
"Spiritual Adventures of young Hakun".

Acknowledgement

Usually, work like this has many contributors, which are planned at the
beginning. However, fortunately, the work is the product of one author,
which is good for several reasons. The reader has the feeling of a unique
educational flow, the level of knowledge is gradually raised, and the method
of education is similar throughout the material.

My gratitude goes to the editors from BPB Publications, and many unknown
individuals who worked to make this material the best possible.

Preface

The book is the author's master peace about game development with the
Godot game engine. Why? Because it's my best knowledge and practice for
creating 2D and 3D video games.

Students of this material will learn through real game examples. After every
game example, a student will know how to create an initial segment of
different video game types.

Material is covered with free code parts in the repository folder and with paid
educational material, "Learn to make commercial video games Godot mega
tutorial." Students can find games explained in the book "Slavs Make Games
itch."

There are nine chapters of learning material.

Chapter 1 is an introduction and encouragement with a "Hello World"
example for students to be comfortable with the Godot game engine and GD
Script.

Chapter 2 will cover GD Script programming concepts as the primary
coding tool for 2D and 3D video games in Godot. The student will learn
about variables, conditional branches, loops, arrays, and other helpful
programming concepts and tools.

Chapter 3 will teach about 2D Math and 2D Physics in games. Computing is
essential when you design game objects, and the student will learn about it
with 2D game object properties and methods.

Chapter 4 will cover creating a 2D game character, making a 2D game
environment, creating game props, troubleshooting a code, coding ethics, and
many other game programming tips.

Chapter 5 teaches turn-based game-play, game character movement, 2D
Platformer as a quest system, TileMap as background, and coding for a
platformer character.

Chapter 6 will introduce 3D games, spatial, vector3, Creating 3D game
objects with a GD Script, RigidBody methods, prototyping a game scene, and
essential steps in a prototype testing process.

Chapter 7 will cover game planning, character design, props, and
environment adding for a 3D platformer video game.

Chapter 8 will teach about 3D RPG adventure planning and design, MRC
and NPC creating process, an entire movement in the 3D game space, and
animated different movement types.

Chapter 9 will cover the inventory system, save system, and video game
publishing process.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/7rif7de

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Godot-3D-Game-Development. In
case there's an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos available
at https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the

https://rebrand.ly/7rif7de
https://github.com/bpbpublications/Godot-3D-Game-Development
https://github.com/bpbpublications
mailto:errata@bpbonline.com

eBook version at www.bpbonline.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us

at: business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

http://www.bpbonline.com
mailto:business@bpbonline.com
http://www.bpbonline.com

Piracy

If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at

business@bpbonline.com with a link to the material.
If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book. Thank
you!

For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents

1. Introduction
Welcome

Word to game developer

Encouraging at the beginning
Hello World example

Godot node system

GD script

Class 2D node
Position
Rotation
Repetition
Tasks
Scale

2. Towards 2D Game

GDScript in programming
While loop
for loop

If else
Match

Function
Array
Dictionary
Class 2D node (scale, transform, and global)
Scale
Transform
Global position
Z index

Repetition

3. Making 2D Games
2D Math

Controlled movement

First game props
2D Physics
Class static body 2D
RigidBody2D
Recapitulation
Adding RigidBody2D with Godot IDE
Adding RigidBody2D with GDScript
Conclusion

Questions

4. Creating a 2D Game
2D character

2D game environment

Creating game props

Troubleshooting

Coding ethics

Better game play-ability
Conclusion

Questions

5. 2D Adventure

Turn-based game-play
Game character movement

Gameplay
Textual description of the area
2D platformer as part of a quest system
Player character
Conclusion

Questions

6. 3D Math and 3D Physics
Introducing the 3D game IDE
Creating a 3D game object with a script
3D models in a game scene
Material texture
Prototyping a 3D video game

Prototyping with CSG

Game props for the intro scene
Purpose of an intro scene

Conclusion

Questions

7. Project: 3D Platformer
Planning a 3D platformer
Intuitive planner
Character design

Preparing a game scene

Adding robotic game character
Environment for a 3D platformer
Changing the camera frame

Jump option for the game character
Game prop

Initial gameplay

Using texture for game objects

Score system
Conclusion

Questions

8. 3D RPG Adventure
Structure

Objectives
Game planning

Story
Level creation

Game character
Intro scene
Character movement
RPG third-person movement style
Initial game-play
NPC for adventure
MRC interaction
Conclusion

Questions

9. Game Systems in a 3D RPG Adventure
Structure

Objectives

Game inventory system

Game inventory functionality
Inventory game system implementation
Game save system

Game publishing

Conclusion

Questions

Index

CHAPTER 1

Introduction

Welcome

You are starting to read an excellent book. This book is about you and how
you will shape your future through the world of video games. Do you know
that you are a creator? Yes, even when you create nothing, you still make
something. And now, you are one step to knowledge about creating fantastic
video games. You are in front of life’s greatest adventure.

Programming is not so complex as you think. And programming video games
can be easy too. You need to go one step at a time.

The knowledge of this book is about Godot. Game engine - Godot. For a
beginner, a game engine is a tool to create a video game, and for a game
developer, this is a divine device for realizing a vision.

Interestingly, 18 million people search for games on the Internet every day.
Godot has more than 14 million content on the internet (2022) and is the
number one 2D game engine with promising 3D capabilities. So, now you
can see that you are on the right track and in good hands.

As a Godot books writer, this is my fifth book. In the first one, GD Script, 1
taught Godot beginners about Godot’s default script for a coding video game.
The second one, Making Games with GD Script deepens the GD Script
knowledge. Then, in the “Autonomous car systems,” students learned about
data storing and JSON capabilities. Finally, I am focussing on game
developers in the Mastering Godot book, but beginners can still read it.

In this book, I will still teach some beginners stuff to prepare any Godot
beginner for making two 2D video games and one 3D video game. Every
game you learn to make here is the basis for a market-ready video game. You
can create it for fun or sale on the video game market.

It’s good to know that the Godot game engine games can be used or sold
without paying any royalty to Godot developers.

Word to game developer

You aren’t reading a beginner’s book, but any beginner in game development
can learn a lot from it. For example, sometimes you compete with other game
developers, which game is better? However, if your goal is to improve your
video game project, all others are friends, and you can learn from them. This
book is an excellent opportunity to learn from fellow game developer. You
can see and comprehend different and successful approaches to creating
video games. Learning from book teachings, examples, coding methods, and
shortcuts saves you a lot of creative time.

If you, for example, have Python or C# experience, this is helpful in learning
and later in game development. Likewise, coding experience can be
beneficial, and you will comprehend some coding techniques and solutions
quickly. Moreover, with this book, you will get a lot of quality 2D and 3D
game objects. Every game developer knows how to validate expensive game
resources for free.

I will explain complex programming techniques in a way every beginner can
understand. For example, in a first 2D game, there will be a game object
generator with the system to remember every interaction. Complex game
systems increase playability but need a lot of programming know-how and
experience to make. Sometimes, it is good to act like you don’t know and, in
the learning process, get a lot of new stuff.

Encouraging at the beginning

I would like to encourage beginners with a Hello World example with Godot.
For this, you will need to perform the following steps:

1. Use your browser, go to https://godotengine.org/. Click on the
Download card for the download section to open in a browser (Figure

1.1(a)). In the pownload section, select the operating system you use.
Options are Linux, macOS, Windows, and Linux server (Figure 1.1(b)).
For every OS, there is a standard and mono version (image). Then,
select the standard version, 64-bit, if you have x86_64 configuration or
32-bit for x_86):

https://godotengine.org/

@Wnﬂl’ Festures Haews Community About Aesebs _[‘}. Lasrn Coriribute # Donabs

The game engine you've been
waiting for.

mnm Featuren Hean Commumity About Annstn Downinsd Lmarn Contributs ® Donade
Sll®

Download

Lirnax macos Windows Linuzx Sarver Andirnic ‘wieb Lditar

R

Mono version (C# support)

- bt (2B 64) Fi-bit (=05

Hobe Tha 32 bt Mo Binaries g nol rin o 59 Wisckows sy
time being Make s (o seport (48-bat ¥

Figure 1.1: (a) Godot portal (b) Download section

2. After that, the browser will download a compressed(.zip) file with a
game engine. You need to extract it with the application, usually with
the option extract.

Note: Codes in the book will work best with the engine versions
from 3.1 to 3.5.

Oipening Godot_v3.3.3-stable_winbd.exe.zip

You have chosen to open:

Godot 3.3.3

‘What should Firefox do with this fil=?

|| Godot_vw3.3.3-stable_winfd.exe.zip

which is: Compressed (mipped) Felder (33.9 MEB)
from: hivps:/fdownboads.tusfarmily.org

Save File

"1 Da this sutomatically for files like this from now on,

MNote: The 32-bit Mono binaries

aoal LS W - RE_01._- - SCE

Figure 1.2: Browser open dialog

3. You will see the Godot file in some of your folders. You can create a
desktop shortcut, move the file to another location, or start a game

engine.

4. Start the game engine.

Now, you can start the game engine. First, what opens is the Projects
window (Project manager). Then, you can create a new project, select a
project for continuous working, or import a project to the project manager. A
dialog window will be in the center of a project manager if you open a game
engine for the first time, as shown in the Figure 1.3. Close the dialog window
by clicking on a close micro button in the right-hand upper corner or click on

Cancel.

| Open Asset Librany

Figure 1.3: Project window

It will be good to start a new project at this stage of learning. It’s possible to
change the default language for a game engine (upper right), or you can
change it later. So, you can select New Project in the project manager menu

(Figure 1.4):

Figure 1.4: Project manager menu

After that, the New Project dialog will open. First, you need to create a new
project in an empty folder. For this, select by browsing your data or create a
new one (Figure 1.5) in a project path. Also, it will be wise to change the
default name for a game project. You can additionally select a renderer for a
project. For this project, I suggest the OpenGL ES 3.0 renderer. A rendering
engine has a Rendering Manager to send data to the GPU (graphic process

unit) to initialize the correct shaders. Finally, you can click on Create &
Edit to create a new game project:

Create New Project

Figure 1.5: New project dialog

Hello World example

We can create this example with only one game element called Label, but we
will also add other things. For this to work, the game scene is essential, so we
will create one. First, select a 2D game scene in the game scene menu (Figure
1.6). There are other options in the game scene menu (3D scene, user
interface, custom node), and we will talk about them later in the book.
Whenever you create a new scene, an appropriate root node is added. Later,
when you make a new scene, go to the main menu Scene | New Scene:

B Goor [rgira - liraing (GO Sript fore 1 i)

Figure 1.6: New scene menu

When you open a project window (Figure 1.7) for the first time, you will
notice other elements too. For example, you will find many options for the
Godot integrated developer environment (IDE) in the main menu:

W Gotor Dogens - Mlarmang G0 St o T

VIEWPORT

Figure 1.7: Project window
And now, let’s back to our initial project:

e Add a node (game object), click on a large plus sign (Figure 1.8) or Ctrl
+ A.

e Write a label in a Search field and click on Create.

® You can add another node called button using the same principle. So,

select the root node, click on the plus sign, write button, and click on
Create.

Suppose you want to change the node position, hold LMB and move it to the
desired position:

B Goo Lgins - Maasasing GD0_Soript 71 [EESEE ¥]

Figure 1.8: Add a new node

Now, you have a game project with one 2D game scene. In the game scene,
you have three nodes: 2Dnode, label node, and button node.

If you are a game developer, work with a Godot IDE can be easy for you.
Write text to label Hello World, create a signal for a button, and create a new
script. In the function created by signal, set the text to button as Hello World,
hello sky, and that’s it.

Too hard (teachers are talking to beginners), do not worry—first, select the
label on the left-hand side. Then, find the text property in the inspector
window on the right-hand side of the Godot IDE. Write text Hello World,
hello sky. and you are ok too.

To start a game scene, click on a Play scene button (upper right) or click F6
on your keyboard. You played a scene for the first time, so you need to save
it (Figure 1.9(a)). Next, accept the proposition by clicking on the Yes option.
When the save dialog opens (Figure 1.9(b)), accept saving by clicking on the
save option. You will save the scene in a default res project folder. You can
see the results of your efforts now:

Please Confirm... *®

This scene has never been saved. Save befare running?

SAVE STANR A5,

Figure 1.9: (a) Save confirm dialog (b) Save scene dialog

Close the play window, and if you want to change the place of a label or
button in the game scene, select it and drag it. If you want to zoom in or out
in a viewport, use the mouse scroll wheel. Hold and drag red dots (after
selection) around the button node in a viewport to increase the button field.

Godot node system

When you create a game scene, you also get one initial game node. For
example, for a 2D scene, you get node2D. When you make a 3D scene, you
initially get a 3Dnode, and when you create a user interface scene, you get a
control node. From this, you create your game scene, and all added nodes are
child nodes.

So, when you add a child node, you can click on RMB (right mouse button)

and select Add child Node or click on Ctrl + A.

The created node can be selected in the left part of an Add Node dialog
window as shown in the Figure 1.10. All 2D nodes are blue-colored in the
Create New Node window:

Create New Node

Figure 1.10

Your game objects are called nodes in Godot, and you can see them in a
scene window. The first upper is called the root node. All others are child
nodes of an upper one. All nodes are initially visible, but you can toggle
visibility by clicking on a node circle button. For moving, first, select and
then drag to the position.

Properties of a node are visible in an inspector window after selection. If you,
for example, select the button node, you will see its properties in an inspector
window on the left-hand side of a project window (Figure 1.11):

Figure 1.11: Inspector window properties

In the previous example, we added two child nodes, set a signal, and wrote a
bit of code. Code! Don’t panic, please. Coding can be much easy than you
think. For this, we can use the GD Script.GD script

GD script

Now, let’s change a root’s node name. With this, working with many scripts
will be much easy. Click twice on a root node and rename it to 2D_wor1ld. For
this, you can use the RMB and rename option. If you, for example, use RMB
on a node, you will have the opportunity to add a script - attach a script. In
the dialog window Attach Node Script, you can find the Nativ Script, GD
Script, and Visual Script options (Figure 1.12). The GD Script is the default
language for the Godot game engine, and you don’t need to add or download
anything for his computing. So, we suggest adding a GD script to your root
node — node2D:

Attach Mode Script

Language GDScript
Inherits Mode2D
Class Name

"r_-'|||-'.1l-_' Empty

Built-in Script ':'FF

Path

Figure 1.12: Attach node script dialog window

Now, you can create a signal for a button node. First, select it and click on the
inspector window’s second tab - node/signals. Then, select the option
Pressed and click on the connect button. After that, in the dialog, click again
on the Connect button.

Select the script in the workspace and change it. Look at the following

example:
func _on_Button_pressed():
$Label.set_text(“Hello World, Hello Sky”)
In the above code set_text is a method of a label node

Very good till now.

It will be good to delete comments, so your script will as shown in the

following example:
extends Node2D

func _ready():
pass

func _on_Button_pressed():

$Label.set_text(“Hello World, Hello Sky”)
Your root node is the extent of a class 2D node. Every class can store many
more game objects (nodes) and their properties and methods. You can have a
little rest now, and we can later continue with the class 2D node.

Class 2D node

2D node is a fundamental class for other 2D nodes and parent for all added
child nodes in the same scene. Class is inherited from the node class and has
the position, rotation, scale, and z-index properties.

Properties: position, rotation, rotation_degrees, scale, transform,
global position, global_rotation, global rotation_degrees,
global_scale, global_transform, z_index, z_as_relative.

Position

Position can be set and can be retrieved from the 2D object. For position
setting, use set_position(), and to retrieve the position use
get_position(). The vector2 variable needs to be defined for the
set_position() method. When you use the wvariable with the
get_position() method, the variable will be vector2.

Example:
extends Node2D

func _ready():
var pos = Vector2(21, 21)
self.set_position(pos)

Example comment: For example, self represents an extended node — Node
2D. var is used to define a variable. vector2 is a variable type for 2D space
with horizontal and vertical space defined.

The first variable in vector?2 is horizontal, and the second variable is vertical.
func represents function — part of code. The function ready() automatically
starts when you start a game scene, and you don’t need to call it.

For example, changing a label position from the Hello World example will be

something as shown in the following GD Script code:
extends Node2D
func _ready():
var pos = Vector2(120, 120)
$Label.set_position(pos)
Put some spaces when using operators(like “=") and any data
in brackets

Rotation

You can set and retrieve (get) rotation data from a 2D object. For rotation
setting, use set_rotation(), and to retrieve rotation use get_rotation().
When you retrieve the rotation, the variable will be in radians. You can
convert radians to degrees. The key is knowing that 180 degrees are equal to
pi radians. Then, multiply the measurement in radians by 180 divided by pi.
For direct work in degrees, see the rotation degrees property. In calculation, 1
radian = 57.2958.

Example:

example code can be part of ready function

var rot =1

self.set_rotation(rot)

var rot_deg = rot * 180 / PI

Example comment: In this example, you can see the symbol #. This symbol
is for one-line comment. The example also includes characters for
mathematical operations (* for multiplication / for division) and a logo for the
pi constant. The constant represents how many times the diameter of a circle
fits around its perimeter. It is approximately equal to 3.14159.

Good! Repetition and some tasks can be a good continuation after learning
the two (position, rotation) node2D properties.

Repetition

We can create different game scenes in a Godot game engine and add a node
(game objects). For example, for a 2D game, we make a 2D scene, and by
default, we get node2D. 2Dnode is also a root node. To the root node, we can
add child nodes and attach the script. The default Godot script is GD Script
based on Python and Lua, but we can use the Native Script with C++ support,
C#, or visual scripting with visually-oriented game objects.

In the default GD Script, we get some code, mainly comments, but a ready
function also. This function is processed when we play a scene. The ready
function is in many examples for that reason.

Tasks

For the first task, you can code a position for two nodes (label and button).
The goal can be to set both positions as the same horizontal but different in a
vertical part of a position. It will be good to use signalling and node’s
properties from the inspector tab.

And for the next task, you can code a rotation for one of your nodes.

Finish your tasks and then go back (after scale property) to see possible
solutions.

Scale

For scaling game objects, use the scale property, the set_scale () method
for a set, and the get_scale() method to get the scale value. For example,
move the default Godot sprite (select and drag with LMB) into a 2D scene for
the following example to work. This way, the sprite node will be the child
node for the 2D node.

Example:
extends Node2D

export var sca = Vector2(0, 0)

func _ready():

sca = Vector2(3, 3)

self.set_scale(sca)

print(self.get_scale())
Example comment: Export var is good when we want to enable the value of
a particular variable to be changed. It can be used when testing the code and

initially defining values. For example, the print command prints a value in

the output window.

Tasks solutions: I hope you are finished with tasks one and two. Now, you
can check it with the provided solutions.

Task 1:

extends Node2D

func _ready():
Text for label and button
$Label.set_text(“Hello World and “)
$Button.set_text(“ Click me!”)
Setting position for a label
var pos = Vector2(120, 120)
$Label.set_position(pos)
Setting position for a button
var pos_2 = Vector2(120, 150)
$Button.set_position(pos_2)
on click button function

func _on_Button_pressed():
$Label.set_text(“Hello World and Hello sky!”)

Task 2:

You need to add $. .set_rotation(-0.12) after the last code line in a
ready function. With this code, your root node rotates for 0.12 radians. See

the following code:

func _ready():
$Label.set_text(“Hello World and “)
$Button.set_text(“ Click me!”)
var pos = Vector2(120, 120)
$Label.set_position(pos)
var pos_2 = Vector2(120, 150)
$Button.set_position(pos_2)
$”."”.set_rotation(-0.12)

With this know-how, youcan code a scale property for a label node text.
Scale it at 1.5 factors.
Example:
$Label.set_scale(Vector2(1.5, 1.5)) # scale for label
$”.".set_scale(Vector2(1.5, 1.5)) # scale for label and button
If your project is still non-functional, you can copy-paste solutions from
previous examples. Your Hello World can look like Figure 1.13:

Mo syl
1o erorid and Heils S

rel

Figure 1.13: Hello World

As you can see, we learned a lot about Godot IDE and GD Script. You even
know about node properties, and you successfully created your first Godot
project. Knowledge about labels, buttons, and signal-making will be helpful
in the next chapter.

CHAPTER 2
Towards 2D Game

We made a significant step in the previous chapter, and now we can
continue. As a creator, you need tools for shaping your vision. In this
situation, tools are properties of node2D and some GD Script syntax. We can
continue learning the other properties of node2D, but I would like to suggest
some different approaches. First, you will read about essential GD Script
coding concepts (while, for, array, if, dictionary). Just read about it with a
purpose to widen your knowledge necessary for game projects. After that, we
can continue with node2D properties and game projects.

This reading is suitable for experienced developers as a remainder, but for a
beginner, it can be challenging at first. You will see codes like this:

var arr = [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45]

This is an array; a way to temporarily store data for computing. The var
means that this is variable or changeable data. If you, for example, find a
variable like the following:

var game character = “Strong, confident and almost unbreakable.”
Preceding is a string variable, a variable with letters, and other characters. 1
think this can help in a reading of text about programming essentials.

GDScript in programming

From this chapter you will learn how to program through real-life examples.
Every example has a possible implementation. We will start with simple
examples, but examples will become more complex over time. This chapter is
helpful for beginners and suitable as a reminder for any game developer.

While loop

while is a loop that repeats as long as the condition is true.
while condition
some code

Let’s look at an example of a while loop.

Example:
onready var a = [0,1,3,2,5,7,3,4,5,0,5,6,7,2]

func _ready():
while typeof(a[n]) == TYPE_INT :
print(a[n])
n +=1

In this example, code prints the contents of a string if the content type is
numeric. The typeof method is to check the type of content. In addition, you
can use the typeof method to filter large groups of data.

Possible type labels for this method are:

TYPE_NIL = 0: Variable is of type nil (only applied for null).
TYPE_BOOL = 1: Variable is of type bool.

TYPE_INT = 2: Variable is of type int.

TYPE_REAL = 3: Variable is of type float/real.
TYPE_STRING = 4: Variable is of type String.

TYPE_VECTOR2
TYPE_RECT2 = 6: Variable is of type Rect2.

5: Variable is of type vectorz2.

TYPE_VECTOR3 = 7: Variable is of type vectors3.
TYPE_TRANSFORM2D = 8: Variable is of type Transform2b.
TYPE_PLANE = 9: Variable is of type Plane.

TYPE_QUAT = 10: Variable is of type Quat.

TYPE_AABB = 11: Variable is of type AABB.

TYPE_BASIS = 12: Variable is of type Basis.
TYPE_TRANSFORM = 13: Variable is of type Transform.
TYPE_COLOR = 14: Variable is of type Color.
TYPE_NODE_PATH = 15: Variable is of type NodePath.
TYPE_RID = 16: Variable is of type RID.

TYPE_OBJECT = 17: Variable is of type Object.
TYPE_DICTIONARY = 18: Variable is of type Dictionary.
TYPE_ARRAY = 19: Variable is of type Array.

TYPE_RAW_ARRAY

20: Variable is of type PoolByteArray.

TYPE_INT_ARRAY = 21: Variable is of type PoolIntArray.

TYPE_REAL_ARRAY = 22: Variable is of type PoolRealArray.
TYPE_STRING_ARRAY = 23: Variable is of type PoolStringArray.
TYPE_VECTOR2_ARRAY = 24: Variable is of type Poolvector2Array.
TYPE_VECTOR3_ARRAY = 25: Variable is of type Poolvector3Array.
TYPE_COLOR_ARRAY = 26: Variable is of type PoolColorArray.

TYPE_MAX = 27: Marker for end of type constants.

The following example prints only numeric values if they are non-zero.

Numbers from one-dimensional array prints up to zero.
while typeof(a[n]) == TYPE_INT && a[n] != 0:
print(a[n])
n+= 1

How would you check if the data type is a vector? For example, you would

type vector2 or vector3. Let’s look at the following example.
while typeof(a[n]) == TYPE_VECTOR2:
or while typeof(a[n]) == 5:

With the break command, you can stop executing the while loop. You can
see the conditional branching (if) and the while loop in the example.

Example:
func code_test():
var a = 0
while a < 7:
print(a)
a +=1
if a == 5:
print(“Make a break at 5")
break

Note: Python allows the else command to be in the while loop.

Use the continue command to stop the current iteration and continue with
the next.

Example:
func code_test():
var a =
while a

a += 1

Aol

7:

if a ==
print(“Continue after 5")
continue
print(a)

for loop

for loop repeats within the defined range from-to. When using an array or a

dictionary, use the name as in the following example:
onready var a = [0,1,3,2,5,7,3,4,5,0,5,6,7,2] # Array

for 1 in a:
print(a[i]) # Prints array elements

The following example shows how to add up all the numerical elements of a
single array. The example uses a range function. The 1en command is to get

the number of elements in an array or a string:
var sum = 0
for 1 in range(1,len(a)):

sum += afi]

Rank can have a defined step; in the example, every third element in the rank

prints.
func code_test():
var 1 = 0
for i in range(0,30,3):
print(1i)

Only numbers that we want to use can be defined in a rank. For example, to

print only certain elements of a string;:
func code_test():
var 1 = 0
for 1 in [6,12,3,9]:
print(a[i])

In addition, you can type in the string name and use its elements (letters)

through the for loop:
func code_test():
var hello = “Hello GD”
for i in hello:
print(1i)

Use the continue command to stop the current iteration and continue with

the next:

func code_test():
var hello = “Hello GD”
for 1 in hello:

if i==" “:
continue
print(1i)

If else

Conditional branching using the if command is an old programming
technique. In addition to this command, elif and else commands are also

used. Let’s look at examples.
if typeof(a[n]) == TYPE_STRING && a[n]=="":
n+= 1
The example uses comparison operators such as the == character; let’s look at
what other comparison operators can be:

== Equals

> Greater than

< Less than

>= Greater or equal
<= Less or equal

1= Not equals

The logic operator && is also used in the example; let’s look at the other
logical operators:

| | Or Boolean or
1 Not Boolean not

Now, let’s explain the current example. Conditional branching checks the
data type from a one-dimensional string is a string. It also prevents that the
string is content-free.

If the conditions are met, the counter is increased by one. The following

example shows the use of an elif command:
func code_test():

var hi = “Hi GD”

var 1n = len(hi)

if 1ln >=5:

print(“Five or more letters”)

elif 1n <=4:

print(“Four or less letters”)

See also an example for using the else command:
func code_test():

var hi “Hi GDScript”
var 1n len(hi)
if 1n < 6:
print(“Less than six letters”)
else:
print(“Six or more letters”)

If and else can be used in conditional expressions, let us see an example.

Example:

var is_nice = true

var state = “nice” if is_nice else “not nice”
print(state)

Match

Using the match command, we have the possibility of conditional branching.
This type of conditional branching is specific, and there are different ways to
use it. Example shows use with numeric values.

Example:
onready var a = [0,1,3,2,5,7,3,4,5,0,5,6,7,2]
onread var modes = [0,0,0,0,0,0,0,0]

func ready():
for i in a:
match a[i]:

1:
modes[1] += 1
2:
modes[2] += 1
3:
modes[3] += 1
4:
modes[4] += 1
5:
modes[5] += 1
6:
modes[6] += 1
7:

modes[7] += 1
print(“Modes are: “ + str(modes))

The program code in the example calculates the mod value for the elements
of a one-dimensional array. So if you have the same code for your different
match options, you can set it up like this.

Example:

for i in a:
match af[i]:
1,2,2:
print(“variable 1,2 or 3 found”)

The following example will show you how to use a match for counting
different types of data in an array.

Example:
func code_test():
var data = [“text”,33,42,6,"e"]
var string = 0
var ints = 0
for i in range(0,len(data)):
match typeof(data[i]):
TYPE_STRING:
string += 1
TYPE_INT:
ints += 1
print(“Strings: “ + str(string))
print(“Integers: “ + str(ints))

Function

In the following examples, we will see how the function is used. Let’s first
see how to declare a function with a single parameter. This function will sum

all the numeric values in the array:
func calc_sum(sum):
var summ = 0
for i in sum:
summ += sum[i]
print(summ)

The function starts via the function name; the parameters for the function are

in parentheses:
onready var a = [0,1,3,2,5,7,3,4,5,0,5,6,7,2]

func _ready():
calc_sum(a)

The function may contain code without parameters. This can be used when

we repeatedly need to perform a specific activity:
func calc_sum() - void: # void when return isn’t used
var summ = 0
for i in a:
summ += a[i]
print(summ)

The function can return a value, then the return command is used. See an
example.

Example:
func _ready():

var sum = calc_sum()

print(“Array elements sum is: “ + str(sum))
func calc_sum():

var summ = 0

for i in a:

summ += a[i]
return summ

In the following example, you will see the sum of two numbers; the function
returns a numeric int value.

Example:

func _ready():
var sum = calc_sum(21,45)
print(“Sum is: “ + str(sum))

func calc_sum(a,b) ->int
return a + b

Let’s look at other types of data to restore function values:
void When function didn’t return value.

String Function return string value.

Array Array value.

Dictionary Dictionary data type value.

Array

A matrix or array can contain different data groups. Let’s look at how to

create a one-dimensional matrix:

onready var arr [] # Create all types array
onready var arr Array() # create all types array
onready var arr PoolIntArray() # integer array

Let’s see what other types of data can be stored by specially designed arrays.
PoolByteArray integers from 0 to 255

PoolColorArray color

PoolRealArray float

PoolStringArray string

PoolVector2Array vector2 for 2D space

PoolVector3Array vector3 for 3D space

With the append method, an element is in the array. If the string is empty, the
method adds a new element at the zero position. If there are elements in the

array, a new one adds after the last one:
arr.append(6)

Example:
onready var arr = PoolIntArray()

func _ready():
arr.append(6)
print(arr)

You can define default values in an array individually or for multiple

elements at once.
func _ready():
for i in range(0,15):#multiple elements with for loop
arr.append(0)

Array elements can be defined when declaring the array itself.
onready var arr = [39,51,36]

The count command lets you count the number of the same number elements
in a row. The example uses randomize and randi to generate random

numbers:
func _ready():
randomize()
for i in range(0,101):
var rnd = randi() % 100
arr.append(rnd)
print(arr.count(36))

The sort command is to sort the numeric or string (alphabetical) data:
onready var arr = [39,51,36]
func _ready():
randomize()
for i in range(0,101):
var rnd = randi() % 100
arr.append(rnd)
arr.sort()
print(arr)

You can use the find command to find a specific value within an array:
func _ready():
randomize()
for i in range(0,101):
var rnd = randi() % 100
arr.append(rnd)
var rnd = randi() % 100

print(arr)
if arr.find(rnd):
print(“Number “ + str(rnd) + “ is found in an array!”)

There are many other commands for working with an array. Let’s look at the
comments and examples.

Example:
onready var arr = [39,51,36]
func _ready():
randomize()
arr.insert(1,93) # insert element into array
print(arr[1]) # print element at position
arr[2] = 33 # declare value of element
print(arr)
arr.shuffle() # randomly change elements in array
print(arr)

You can define an array with different element types:
onready var arr = [39,51,36,"”some text”,”&"”,15]

Different type arrays can be filtered into arrays containing only one data type:

Example:
onready var arr = [39,51,36,"some text”,”&"”,15]
func _ready():
var int_arr = []
var str_arr = []
for 1 in range(0,len(arr)):
if typeof(arr[i]) == TYPE_INT:
int_arr.append(arr[i])
if typeof(arr[i]) == TYPE_STRING:
str_arr.append(arr[i])
print(int_arr)
print(str_arr)

Note: When working with larger data groups, it is good that the data
belong to the same type.

Dictionary

Dictionary allows you to store different types of data. Each data or data group
is under a specific key. When declaring, the key is the first data, then the
colon, followed by the value:

onready var dict = {1: 9, 2: 24, 3: 9}

Let’s look at an example that prints the contents of a dictionary:

onready var dict = {1: 9, 2: 24, 3: 9}
func _ready():
print(dict)

The following example lists the size, keys, and values of a dictionary:
onready var dict = {1: 9, 2: 24, 3: 9}
func _ready():
print(dict.size()) # how many elements are in
print(dict.keys()) # list of keys
print(dict.values()) # list of values

You can change the key-value if the key exists, or you can add a new key and

value after the last entry:

func _ready():
dict[1l] = 6 dict[“new_key”] = “Text value”
print(dict)

One dimensional matrix can be part of the dictionary. Let’s see an example of

1t.
onready var dict = {1: 9, 2: 24, 3: [9,18,24,30]}
func _ready():
print(dict[3]) # print values of key
print(dict[3][2]) # print element of array under key

See how you can create default values for a dictionary:
onready var dict = {}
func _ready():
for i in range(0,9):
dict[i] = ©

Creating a numeric array within the dictionary:
onready var dict = {}
func _ready():

for 1 in range(0,9):

dict[i] = ©
dict[3] = [3,9,15,18,21]
print(dict)

Creating a string array within a dictionary.
onready var dict = {}
func _ready():

for 1 in range(0,9):

dict[i] = ©
dict[4] = [“alfa”,”beta”,”delta”]
print(dict)

In the following example, you will see how to create a dictionary in the
dictionary

Example:

onready var dict = {}
func _ready():
for 1 in range(0,9):
dict[i] = ©
dict[5] = {“first”:”very good”,"”second”: “good”, “third”:
“acceptable”}
print(dict)
The following example shows how to access values within an array or
dictionary part of a unique dictionary.
Example:
onready var dict = {}
func _ready():
for 1 in range(0,9):
dict[i] =
dict[3] = [3,9,15,18,21]
dict[4] = [“alfa”,”beta”,”delta”]
dict[5] = {“first”:”very
good”, "second” :"”good”, "third”:"”acceptable”}
print(dict[3][3])
print(dict[4][0])
print(dict[5][“first”])

Class 2D node (scale, transform, and global)

The 2D Node is Godot’s primary game object for all 2D child nodes.
Properties of 2D node are scale, transform, and global.

Scale

You can scale a game object in 2D space with the scale property. The
set_scale () method is for the set, and the get_scale () method gets the
scale value. For the following example to work, move the default Godot
sprite into 2D scene space. Select it in a filesystem micro window, and drag it
to the game scene. This way, the sprite node will be the child node for the 2D
node.

Example:
extends Node2D

export var sca = Vector2(0, 0)
func _ready():
sca = Vector2(3, 3)
self.set_scale(sca)
print(self.get_scale())

Example comment: Use the export var when you want to enable the value of
a particular variable to be changed. It can be used when testing the code and
initially defining values. For example, the print command prints a value in
the output window.

Transform

Transform allows you to define the position and rotation in 2D space. This
property uses the transform2D variable defined by two parameters.
Rotation(in radians) and position in 2D space. Use set_transform() method
to set transform, and get_transform() to retrieve transform.

Example:
extends Node2D

func _ready():
transform_object(1,Vector2(60, 60))
func transform_object(rot,pos):
var trans = Transform2D(rot, pos)
self.set_transform(trans)
var for_print = self.get_transform()
print(“Transform2D: “ + str(for_print))

e Example comment:

e In the example, we have a user-defined function. The function
initializes from the ready function. The User function has two
parameters later set in the transform2D. When you want to print some
text via the print command, the text should be in quotation marks. Use
the + character to connect parts of the text. Use the str() command to
translate numeric values into text.

Global position

Position in scene can be set and can be retrieved from the 2D object. For
position setting, use set_global_position(), and to retrieve position use
get_global_position(). Vector2 variable needs to be defined for the
set_global position() method. When you use the variable with the
get_global_position() method, the variable will be vector2.

Example:
extends Node2D
const global pos = Vector2(18, 18)

func _ready():
self.set_global_position(global_pos)
var get_pos = self.get_global_position()
print(get_pos)

Example comment:

The Const are good to declare a constant variable.

Z index

Z index or rendering order determines in which layer a particular object is. To
set the z index, use the set_z_index() method. Use the get_z_index()
method to get the z index values. The default value is 0, higher values show
objects above, and lower values show objects below default values.
Example:
extends Node2D
func _ready():

var get_zin = self.get_z_index()

match get_zin:

0:

print(“Default value.”)
1:

print(“This object is above”)
-1:

print(“This object is below”)

Example comment:

In this example, we use a conditional branch — the match. When using this
conditional branching, you first define the variable (for example, get_zin)
and then the options. If the option is valid, then you can enter a specific code
(for example, print).

Repetition

In this chapter, you learn about various programming techniques and
concepts. Some of GD Script commands are often in-game making, others
are not.

For example, IF as the GD Script command is part of every video game
coding. “Array” command is also often in game making. In the following
example, IF conditional branching determines the solution path for some
conditions:

var materials = [“initial value”, “planks”, “tools”]

var have_material = [“initial value”, “yes”, “yes”]

if have_material[1] == “yes” and have_material[2] == “yes”:
have materials for a build
print(“You have “ + materials[1] + “ and “ + materials[2] +
“ for build.”)

In the example, data are stored in an array and checked with IF conditional
branch.

One of the next explained commands is the FOR loop. When you combine if

and for, a lot of data can be filtered easily. Let’s take a look at this example:
var materials = [“initial value”, “planks”, “tools”, “wood”,

“metal”]
for f in range(1, 4):
if materials[f] == “wood”:

print(“You have wood in materials list.”)

The Else is part of the IF conditional branch and also can be helpful. First,
you set a condition with an IF part and everything that doesn’t compute with

IF will be resolved in the ELSE part:
var materials = [“initial value”, “planks”, “tools”, “wood”,
“metal”]
for f in range(1, 4):
if materials[f] == “wood”:
print(“You have wood in materials list.”)
else:
print(“Non wood material is “ + materials[f])

Many video games have few commands only, but it’s good to have a broader
programming knowledge.

It’s wise to create the functional code with fewer code lines. Functions can
make every code compact and readable. When you repeat a part of code more
than twice, consider using a function.

We also explain a match conditional branch. Although, many game
developers don’t use this command, the match still has many advantages.

Let’s look at the following example:
var materials = [“initial value”, “planks”,
“tools”, "wood”, "metal”]
for £ in range(1, 5):
match materials[f]:
“planks”:
print(“Can do many things with it.”)
“tools”:
print(“what can I do without a tools.”)

“metal”:
print(“Useful material too.”)

With all this information, you are ready for some actual game coding in the
next chapter. You will learn about 2D game math and game objects called
nodes. So take a little rest, and we will continue with some exciting parts of
our learning journey.

CHAPTER 3
Making 2D Games

2D Math

This chapter can start with some good news. First, with a dedicated 2D
engine Godot is one of the best 2D game engine from 2020. Second, the
author (Marijo Trkulja) of these lines is Godot teacher with 4 books already
written (2021) and more than 12 courses made. The tutorial “Learn to make
commercial video games — Godot mega tutorial”(2022) is currently the
largest tutorial on the subject with more than 24 hours of video content.

What is a video game math?

Game math is all about computing like mathematical operations (see the
following example).

Example:

var sword = 12

var shield = 12

var warriors
warriors = (sword + shield) / 2

But what is 2D games math?

2D Game Math is also about computing, but computing in 2D space using
vector2 and other variable types.

Every vector2 variable has two operators, one (X-axis) for horizontal and the
other (Y-axis) for the vertical part of the vector2 variable. For example, you
can set the position for a sprite image we put into the 2D scene:
$icon.set_position(Vector2(120, 120))

To change the position, set the position again, or use the translate property

for vector? translation (vertical/horizontal):
$icon.translate(Vector2(100, 0))

Controlled movement

With this know-how, you can create a controlled movement. For example,
you can create a timer game node. You can set the wait time to 0.3, and check
auto-start. After that, you can make a signal for the timeout property. The

code for the generated function is as follows:
func _on_Timer_timeout():
$icon.translate(Vector2(3, 0))
if $icon.get_position().x > 150:
$Timer.stop()

The code means that the sprite image translates horizontally for 3 pixels
every 0.3 seconds until the position is greater than 150 pixels.

If you use set_position, the code looks like the following:
onready var n = 0
func _on_Timer_timeout():
$icon.set_position(Vector2(120 + n, 120))
n += 1
if $icon.get_position().x > 150:
$Timer.stop()

It has one more option just to see how many possibilities you have for the
same coding activity:
func _on_Timer_timeout():
$icon.move_local_x(3)
if $icon.get_position().x > 150:
$Timer.stop()

You can create the controlled movement with the initial rotation using
transform2D.

Example:
func _on_Timer_timeout():
var trans = Transform2D(0.1, Vector2(120 +n, 120))
$icon.set_transform(trans)
n += 3
if $icon.get_position().x > 150:
$Timer.stop()

First game props

And now, something interesting. First, let’s create a function for making
game props—sprites, in our situation. For this, we can create one user

function with a vector2 parameter:

func create_props(pos_var):
var sprite = Sprite.new()
sprite.set_texture(texture)

sprite.set_scale(Vector2(0.3, 0.3))
sprite.set_position(pos_var)
.add_child(sprite)

You can call this function from ready:
func _ready():
create_props(Vector2(100, 10))
Let’s create 12 props with the exact distance between them:
for i in range(10, 360, 30):
create_props(Vector2(10 + i, 10))
And what if we, for example, want to create a different distance between
game props? We can use random number generators, so let’s learn about

them.

Rand range

The rand range method generates a random float value based on parameters.
Two parameters determine the range for generating a random numeric value.
Example:
func _ready():
var rnd
for i in range(0, 9):
rnd = rand_range(0, 9)
print(rnd * 100)

Rand seed

Random from seed: We can pass a seed and an array with both the number
and new seed in return. The seed here refers to the internal state of the
pseudo-random number generator. The internal state of the current
implementation is 64 bits.
Example:
func _ready():

var random_seed = rand_seed(9)

seed(random_seed.hash())
print(randi())

Randf
Randf returns a random floating-point value on the interval [0, 1].

Example:
func _ready():
print(randf())

Randi
Randi returns a random unsigned 32-bit integer.

Example:

func _ready():
randomize()
print(randi()) # random integer between 0 and 2A32 - 1
print(randi() % 100 + 1) # random integer between 0 and 100

Randomize

Randomize randomizes the seed (or the internal state) of the random number
generator. The current implementation reseeds using a number based on time.
Example:
func _ready():

randomize() # Randomizes the seed

print(randi() % 27) # random integer between 0 and 26
Good. We can now create a different distance between game props with a

random number generator:
randomize()
for i in range(10, 360, 30):
var rnd_no = randi() % 11 + 1
create_props(Vector2(10 + i + rnd_no, 10))

2D Physics

The physics in 2D game space under a Godot 2D engine depends on the
dedicated 2D engine.

Developers can use different types of 2D bodies and tile-maps to make 2D
games. For static game objects, StaticBody2D is good; for a moveable
character, KinematicBody2D is an option, and for a game object with 2D
Physics capabilities, RigidBody2D. So, let’s learn about 2D bodies game
elements.

Class static body 2D

StaticBody2D is for 2D Physics, not intended to move, and is suitable for
objects in the environment such as walls or platforms.

Its properties are as follows: constant linear velocity, constant angular
velocity, friction, bounce and physics material override.

Constant linear velocity

Method constant linear velocity for the 2Dbody does not move the body but
affects colliding bodies. Add the staticBody2D node for this example (write
StaticBody2D in the Add node dialog window). Also, add collisionShape2D
as a child node. You need to set the collision shape to a rectangle shape
(inspector window, shape property). Use RigidBody2D to test examples (add
it as a node). Add the circular collision shape for a rigid body. Don’t forget to
enable visible collision shapes (main menu Debug).
Example:
func _ready():
$StaticBody2D.set_position(Vector2(0, 300))
$StaticBody2D.set_constant_linear_velocity(Vector2(9, 9))

$StaticBody2D/CollisionShape2D.shape.set_extents(Vector2(240,
12))

Constant angular velocity

The ‘constant angular velocity’ method does not move the body but affects
colliding bodies.

Add the StaticBody2D node to this example. Also, add collisionshape2b as
a child node. Set the collision shape to a rectangle shape. Use RigidBody2D
to test examples. Add the circular collision shape for a rigid body. Don’t
forget to enable visible collision shapes (menu Debug). Try different
examples, each with other properties.
Example:
func _ready():

$StaticBody2D.set_constant_angular_velocity(0.3)

#$StaticBody2D.set_constant_angular_velocity(-0.3)
#$StaticBody2D.set_constant_angular_velocity(1)

Friction

This is the 2Dbody’s friction. The values range from 0 (no friction) to 1 (full
friction).

Example:

func _ready():
#$StaticBody2D.set_constant_linear_velocity(Vector2(0, -12))
$StaticBody2D.set_friction(1)

Bounce

This is the body’s bounciness. The values range from 0 (no bounce) to 1 (full
bounciness).

Example:

func _ready():

#$StaticBody2D.set_constant_linear_velocity(Vector2(0, -21))
$StaticBody2D.set_bounce(0.6)

Physics material override

The physics material override method allows you to change the physics
material. New material can have definite properties such as friction, rough,
bounce, and absorption.
Example:
func _ready():

var NewMaterial = PhysicsMaterial.new()

NewMaterial.set_bounce(1)

$StaticBody2D.set_physics_material_override(NewMaterial)
StaticBody2D is OK for a static game object, but you can do these in other
ways like tiles with collision shapes. With staticBody2D, you can create a
dynamic game object. Thanks to properties (constant linear velocity, constant
angular velocity, friction, bounce, physics material override). Developers can
create game objects like sliders, bounce trampolines, or horizontal elevators
(escalators) for 2D games. It’s advisable to learn about StaticBody2D
methods too. We can’t include everything in this book. A game developer
can find additional information about the StaticBody2D, KinematicBody2D,
and RigidBody2D properties and methods in the book Mastering Godot by
(Prof. Marijo Trkulja).

RigidBody2D

The RigidBody2D reacts to physical impulses in 2D game space. When you,
for example, test the StaticBody2D linear or angular velocity, you need to set
a RigidBody2D. Linear and angular velocity are also properties for
RigidBody2D, but you can use the applied force and torque.

When using RigidBody2D, collision shapes are almost a must. You can use
CollisionShape2b for collision detection; a CollisionPolygon2D is an
option as well.

In RigidBody2D properties, you can find the mass, weight, and gravity scale.
Remember that RigidBody2D does not emit collision signals by default. If
you need them, set contact monitoring to true.

A game developer can find a detailed explanation of the RigidBody2D
properties and methods in the book Mastering Godot. If this extensive
material needs to be included in a book, it will go beyond its scope and
purpose. However, a few examples are given.

Example:
Example: turning monitoring on
$RigidBody2D.set_monitoring(true)

Example: Code for RigidBody2D creation
extends Node2D
onready var texture = preload(“res://icon.png”)

func _ready():
create_rb(Vector2(210, 120))

func create_rb(pos_var):
var rigid = RigidBody2D.new() # new rigidbody2D
rigid.set_position(pos_var)
var coll = CollisionShape2D.new() # new collisonshape2D
var shape = RectangleShape2D.new() # shape type
shape.set_extents(Vector2(33, 33)) # shape extents
coll.set_shape(shape)
var sprite = Sprite.new() # new sprite
sprite.set_texture(texture) # setting texture for sprite
rigid.add_child(coll)
rigid.add_child(sprite)
.add_child(rigid)

Example: Generator for a random placed rigidbody2D
use with user created “create_rb” function
func _ready():
randomize()
for i in range(110, 460, 30):
var rnd_no = randi() % 11 + 1
create_rb(Vector2(10 + i + rnd_no, 10))

Hope this is an excellent introduction to RigidBody2D. Now, we will learn
about some of its properties.

Mode
A RigidBody2D has four modes; the default is rigid(0), and the others are a

static(1) and kinematic(2) body. The mode character (3) is similar to the rigid
but without rotation.

Example:

func _ready():
var rb = RigidBody2D.new()
var c¢s = CollisionShape2D.new()
var shape = RectangleShape2D.new()
shape.set_extents(Vector2(120,30))
rb.set_position(Vector2(60,60))
cs.set_shape(shape)
rb.add_child(cs)
rb.set_mode(1) # Static mode
self.add_child(rb)

Mass, weight and inertia

The property mass is the RigidBody2D mass; the default value is 1. Mass and
weight are dependable values; weight is adjusted when you change a mass
value. The weight value is based on the mass and the default gravity value.
Inertia is like mass, but for rotation (for automatic calculation), inertia is O.
You can create a RigidBody2D with the default name for the code example.
Example:
func _ready():

print ($RigidBody2D.get_mass())

$RigidBody2D.set_mass(3)
print($RigidBody2D.get_weight())

Example:
func _ready():
$RigidBody2D.set_inertia(0)

Friction

This is the body’s friction. The values range from 0 (friction-less) to 1
(maximum friction). The default value is 1. If, for example, you set the
friction to 1, the RigidBody2D would slide on an inclined surface of the
StaticBody2D.

Example:

func _ready():
$RigidBody2D.set_friction(0.3)

Bounce

This is the body’s bounciness. The default value is 0.

Example:
func _ready():
$RigidBody2D.set_bounce(0.3)

Physics material override

Using this feature, you can change the properties of the material. For
example, you can change the friction and bounce.

In addition to this, it is possible to change two additional properties of
RigidBody2D: rough and absorbent. Let’s take a look at the following
example.

Example:

func _ready():
var rb = RigidBody2D.new()
var cs = CollisionShape2D.new()
var shape = RectangleShape2D.new()
shape.set_extents(Vector2(120,30))
rb.set_position(Vector2(60,60))
cs.set_shape(shape)
rb.add_child(cs)
self.add_child(rb)
var pm = PhysicsMaterial.new()
pm.set_friction(0)
pm.set_bounce(0.3)
rb.set_physics_material_override(pm)

Gravity scale

The gravity scale multiplies the gravity applied to the body. The body’s
gravity is calculated from the pefault Gravity; its default value is 1.

Example:
func _ready():
$RigidBody2D.set_gravity_scale(0.3)

Custom integrator

If true, the internal force integration is disabled for this body. Apart from the
collision response, the body will only move as determined by the
_integrate_forces() function.

In the following example, the body movement is defined by the physics

material override. So, for instance, you need to add a RigidBody2D node.

Example:

func _ready:
$RigidBody2D.set_use_custom_integrator(false)
var nm = PhysicsMaterial.new()
nm.set_bounce(1)
$RigidBody2D.set_physics_material override(nm)

Continuous cd

The continuous collision detection tries to predict where a moving body will
collide instead of moving it and correcting its movement safter the collision.
As a result, the continuous collision detection is slower but more precise and
misses fewer collisions with small, fast-moving objects. In addition,
raycasting and shape casting methods are available.

Modes:

CCD_MODE_DISABLED = 0

The continuous collision detection is disabled. This mode is the fastest way to
detect body collisions, but you can miss small, fast-moving objects:
CCD_MODE_CAST_RAY = 1

The continuous collision detection can be enabled using ray-casting. This
mode is faster than shape casting but less precise:

CCD_MODE_CAST_SHAPE = 2

The continuous collision detection can be enabled using shape casting. This
mode is the slowest CCD method and the most precise.

Example:

func _ready():
$RigidBody2D2.set_continuous_collision_detection_mode(2)

Contact reported

The method contact reports are to set max contacts to report. The default
value is 0. So, for example, you need to create a RigidBody2D and a
StaticBody2b node with collision shapes.

Place RigidBody2D above StaticBody2D. Also, set the RigidBody2D signal
body shape entered. This signal will create a function.
Example:

func _ready():
$RigidBody2D.set_contact_monitor(true)

$RigidBody2D.set_max_contacts_reported(4)

func _on_RigidBody2D_body_shape_entered(body_id, body,
body_shape, local_shape):
if $RigidBody2D.is_contact_monitor_enabled():
print(body_id)
print(body)
print(body_shape)
print(local_shape)

Contact monitor

If true, the body will emit signals when it collides with another RigidBody2D
—default value: false. Take a look at the example for contact reported.
Sleeping

If true, the body is sleeping and will not calculate forces until woken up by a
collision or by using apply_impulse() or add_force().

Example:

func _ready():

$RigidBody2D.set_sleeping(true)

if $RigidBody2D.is_sleeping():
print(“Use apply_impulse() or add_force()”)

Can sleep

If true, the body will not calculate forces and act as a static body without
movement. However, the body will wake up when other forces are applied
via collisions or using apply_impulse() or add_force()—default value:
true.

Example:

func _ready():

if $RigidBody2D.is_able_to_sleep():
$RigidBody2D.set_can_sleep(false)

Linear velocity
This is the body’s linear velocity.

Example:
func _ready():
$RigidBody2D.set_linear_velocity(Vector2(-120,30))

Linear damp

The linear damp method damps the body’s linear_velocity. You can add
the timer node (0.15, autostart) and RigidBody2D in this example.
Example:
onready var 1_damp = 0
func _ready():
$RigidBody2D.set_linear_velocity(Vector2(-120,0))
func _on_Timer_timeout(): # func created by Timer signal
if 1_damp < 10:
$RigidBody2D.set_linear_damp(l_damp)
1 damp += 1

Recapitulation

Godot 2D Physics is very rich with 2Dbody’s properties and methods. The
most commonly wused are RigidBody2D, KinematicBody2D, and
StaticBody2D. For collision detection, Area2p is a good choice.

The StaticBody2D is used for a static object with 2D Physics in the game
creation process, and RigidBody2D is used for moveable game objects.

You can create these objects by using IDE or by code. For example, let me
remind you how to do it.

Adding RigidBody2D with Godot IDE

First, to create a RigidBody2D node, use the add child node or keyboard
shortcut Ctrl + A. Type in the search field Rigid, select RigidBody2D, and
click on the create button. Repeat the same (when RigidBody2D is selected),
type collision, and select CollisionShape2D. The CollisionShape2D needs
to be sub-node. In the Inspector window, find Shape and select new
RectangularShape2D. Use the select mode micro buttons to set the size for
the collision shape.

Adding RigidBody2D with GDScript

Type the following GDScript code to create a RigidBody2D with
CollisonShape2D.

Example:
extends Node2D
func _ready():
var rb = RigidBody2D.new()

var c¢s = CollisionShape2D.new()
var shape = RectangleShape2D.new()
shape.set_extents(Vector2(120,30))
rb.set_position(Vector2(60,60))
cs.set_shape(shape)
rb.add_child(cs)
self.add_child(rb)

Task

You have enough know-how data to create a spawning point. Use the default
texture for the rigid body and create an initial button. Your code needs to
make 21 game objects with 2D gravity (rigid body) above the static body (use
default or other texture). You can create StaticBody2D with Godot IDE, but
you will have it in the following example if you decide to use coding. The
following example is also practical when making a spawning procedure.

Example:

func create_stat_body():
var sta = StaticBody2D.new()
var col = CollisionShape2D.new()
var shape = RectangleShape2D.new()
shape.set_extents(Vector2(600, 5))
col.set_shape(shape)
sta.add_child(col)
var sprite = Sprite.new()
sprite.set_texture(txture)
sprite.set_scale(Vector2(12, 0.12))
sprite.set_position(Vector2(300, 0))
sta.add_child(sprite)
sta.set_position(Vector2(30, 500))
self.add_child(sta)

It will be good to start working on a task and then go back to see a possible
solution. In the following coding example, you can see the solution for your
previous task. The answer has two functions. First, you create a static body,

and second, you make a rigid body:
onready var txture = preload(“res://icon.png”)
func _ready():
create_stat_body()
for f in range(1, 22):
create_rigid_spawn()

func create_stat_body():
var sta = StaticBody2D.new()
var col = CollisionShape2D.new()

var shape = RectangleShape2D.new()
shape.set_extents(Vector2(600, 5))
col.set_shape(shape)

sta.add_child(col)

var sprite = Sprite.new()
sprite.set_texture(txture)
sprite.set_scale(Vector2(12, 0.12))
sprite.set_position(Vector2(300, 0))
sta.add_child(sprite)
sta.set_position(Vector2(30, 500))
self.add_child(sta)

func create_rigid_spawn():
var sta = RigidBody2D.new()
var col = CollisionShape2D.new()
var shape = RectangleShape2D.new()
shape.set_extents(Vector2(12, 12))
col.set_shape(shape)
sta.add_child(col)
var sprite = Sprite.new()
sprite.set_texture(txture)
sprite.set_scale(Vector2(0.39, 0.39))
sprite.set_position(Vector2(0, 0))
sta.add_child(sprite)
sta.set_position(Vector2(250, 10))
self.add_child(sta)

Conclusion

The chapter is one of the essential book chapters. In the next chapter, we will
create our first game project. Thus, knowledge about 2D bodies will be
necessary. For example, we will learn about KinematicBody2D, and the
student will extensively apply its properties in a Chapter 4, Creating a 2D
Game.

For an exciting gameplay, the concept of a game object called game bodies is
included in the Godot game engine. As discussed in this chapter, we use
StaticBody2D in 2D space for static game objects. The moveable game
object gives the necessary gameplay and awakens a game player’s interest.
For this, we use KinematicBody2D and RigidBody2D. So, it’s wise to go
through tasks and examples to understand the body’s concept better.

uestions

e

What is the difference between RigidBody2D and StaticBody2D?
How will you code craft RigidBody2D?
What are the additional game elements for a functional RigidBody2D?

If you want to create a game character, when will you use a
KinematicBody2D?

CHAPTER 4
Creating a 2D Game

A s your game dev’s know-how increases, it’s a good time to start making a
complete 2D game. For this, we use the Godot 2D engine. Of course, we
can make any 2D video game, but let’s use previously learned about 2D
Physics and 2D Math to create one.

2D character is usually the core of any 2D game; for this one, we can use it as
simply as possible. But still, the character needs to have movement ability in
2D space, and we can add some animations to it. Therefore, you will have the
possibility to create a complex 2D character for the following 2D game
project. When you create one, it’s good to have a plan. A plan helps you to
see better your creative vision. So, let’s plan a 2D adventure.

The first part of the plan is an entirely functional game level. So, it would
help if you had a 2D Character, 2D game environment, 2D game props, game
mechanics, and game graphics. The second part is creating additional game
elements like game menu, intro video, music, audio effects, save systems,
and so on. After, you can add more game levels and start with game testing.

In this chapter, we will create a 2D game character; make a 2D game
environment; create game props; troubleshoot a code; learn about coding
ethics; improve game play-ability; and game menu.

2D character

You can start a new game project and a new 2D scene for a 2D character. For
example, you can create a KinematicBody2D with CollisonShape2b and
Sprite2D as child nodes. You can set a rectangle as the collision shape. Use
ball patform.png from the file repository as the sprite2D texture.

In the beginning, we used a simple graphic to create and test. Later on, you
can change it with more quality graphics for an eventual game project for a
game market. Rename the root node as 2D_character (RMB + rename) or
something you like, and add a GD Script to it (RMB + attach script).

Create the process function and add the following code for movement in 2D

space:
onready var pos = Vector2(0, 0)
onready var mf = 3

func _process(_delta):
pos = $KinematicBody2D.get_position()
if Input.is_action_pressed(“ui_right”):
$KinematicBody2D.set_position(Vector2(pos.x + mf,pos.y))
if Input.is_action_pressed(“ui_left”):
$KinematicBody2D.set_position(Vector2(pos.x - mf,pos.y))
if Input.is_action_pressed(“ui_up”):
$KinematicBody2D.set_position(Vector2(pos.X, pos.y - mf))
if Input.is_action_pressed(“ui_down”):
$KinematicBody2D.set_position(Vector2(pos.x, pos.y + mf))
The code allows the movement in the four directions of 2D space. The
variable mf is the movement factor (character speed) and can be changed

before the game starts or in a game with some game bonuses.

In a game project, we use 2D position change for the movement. In the next
game project, you will learn about other methods for 2D character movement.

The player moves a bat on a 2D screen to influence a ball’s movement in this
game. A good idea can be to add a ball game prop in the same scene with a
2D character (bat).

You can add RigidBody2D with two child nodes (CollisonShape2D,
sprite2D). The settings for RigidBody2D are custom integrator on (true),
contact reported 3, and contact monitor on(true). You can find these
properties in the RigidBody2D inspector window. You can set circleShape2D
for collision, and small_ball magenta_transparent.png for Sprite2pD
texture as shown in the Figure 4.1. You can test the character movement and
interaction with a ball on this stage if you like. A suggestion is to test it after
we add it as an instance in a 2D environment.

ball_platform

metal_ground img_1 small_ball_magenta_transparent prop_rect

Figure 4.1: Graphical props for a game

2D game environment

Let’s create a new 2D scene for a game environment. For this, let’s use the
Sprite2D node and a few static bodies. Our game environment will have
passive game elements with the collision and without it. When it is done, we
can add some active game elements (game props).

You can add the colorRect node, and set it. You can set the size first, and
then put a color in the inspector window. A ColorRect is our initial
background, but you can change it later with some Sprite2D texture.

Next, add few static bodies, and create a rectangle-shaped 2D space for
gameplay. StaticBody’s (game objects) can have set values for linear and
angular velocity.

You can create the game space with TileMap, but tiles need to have collision
shapes for the game to work correctly. So, when you add the tilemap node, go
to the inspector window and set the new tileset. Then, click on it and select
Edit. New “tiles” is added with a new texture micro button (plus sign). Select
a texture for a single tile.

Click on New single tile. Then, select the region with a mouse click and
drag. If you need a collision shape for a tile, click on the collison button.
Next, pick the collision type, and click on the texture image. With this, a
single tile is added in tileset.

We can set a bouncing property to RigidBody2D (ball) to make things

smoother. For this, create a new physics material:

func _ready():
var nm = PhysicsMaterial.new()
nm.set_bounce(1)
$RigidBody2D.set_physics_material_override(nm)

Creating game props

In the next part, we will learn something interesting. Usually, games have
many game props. You can create it one by one, or you can code.

So, we code. The goal is to create a function for generating game props.
Because game props are StaticBody’s, we make a function for StaticBody’s
creation.

The Function needs StaticBody2D, CollisonShape2D, shape type, sprite2b,

and some properties for each node. Let‘s look at a possible code for it:
onready var textura = preload(“res://prop_rect.png”)
func create_props(prop_name, posX, posy):

var statB = StaticBody2D.new()

var coll = CollisionShape2D.new()
var shape = RectangleShape2D.new()
var sprite = Sprite.new()
shape.set_extents(Vector2(15, 30))
coll.set_shape(shape)
sprite.set_texture(textura)
sprite.set_scale(Vector2(0.3, 0.3))
statB.add_child(sprite)
statB.add_child(coll)
statB.set_name(prop_name)
statB.set_position(Vector2(posx, posy))
.add_child(statB)

It looks complex. Maybe by its first look, but let me explain. You first create

elements with a new method, then you set properties. Later, you add node
and child nodes.

With set extents, you are forming a collision shape in a 2D space. The set
shape defines the collision shape type. When you need to add an image to
Sprite2D, use the “set texture.” The set scale makes scaling for a sprite
texture.

With the set name property, your instance gets a name. The set position
defines the position in a 2D space.

The next part of the code will call the function and create props. The three
parameters in the function are prop name, x part of vector2 position, and y

part of vector2 position:
func _ready():
var 1 = 1 # Used for different prop names
for f in range(120, 1040, 40):
create_props (“prop” + str(i), f, 100)
i+=1
for f in range(120, 1040, 40):
create_props(“prop” + str(i), f, 120)
i+=1
for f in range(120, 1040, 40):
create_props(“prop” + str(i), f, 140)
i+=1
The game will have a simple score system. For this, add one label node.
When the ball interacts with a game, the prop player gets one point. Then, the
ball disappears from the game screen. For this, we will create a signal from

RigidBody2D. Create a signal for the body shape entered. Then, you can add a
code in the generated function:

onready var score = 0
func _on_RigidBody2D_body_shape_entered(body_id, body,
body_shape, local_shape):
for f in range(1, 72):

if body.name == “prop” + str(f):

body.queue_free()

score += 1

$Label.text = “S C O R E: “ + str(score)
If the name of a game object is recognized, the object will disappear

(queue_free).

You can try to play it.

Troubleshooting

It‘s good to know few things about project troubleshooting in Godot IDE. For
this to work, set your game scene as the main scene. Use the main menu
Project | Project Settings. Select the card general in the IDE, find the
Run option, and select your scene as the main scene.

For example, you can start a game project (F6), and a debugger window pops
up with some data.

Parse error: Identifier pos is not declared in the current scope.

To solve this, do not interrupt the application; add the pos variable (before

the ready function):
onready var pos = Vector2(0, 0)

Then, continue with the game project (F5).

The previous error shows a red dot in the debug window. There are some
mistakes with yellow dots (warnings). The application will work if you don’t
solve them.

For example, you can get an error like the following:
The argument ‘delta’ is never used in the function’_process.

This warning can quickly solve. Use delta in your coding or write underscore.
Look at the following example:

func _process(_delta):
You can set debugging options in project settings/debugging. For example, to
disable all warnings, find debug/gdscript and uncheck warnings.

Coding ethics

Some rules in coding are not crucial in script working but helps you to solve
eventual errors better. For example, make at least two rows accessible
between functions. Create space when writing variables and math. Put one
free space in front of numbers or important data to see them better. Look at

the following code example:

extends Node2D

onready var pos = Vector2(0, 0)

onready var score = 0

onready var textura = preload(“res://prop_rect.png”)
onready var mf = 3

func _ready():
var 1 =1
for f in range(120, 1040, 40):
create_props(“prop” + str(i),f,100)
i+=1

func _on_Button_button_down():
$RigidBody2D.set_use_custom_integrator(false)

Better game play-ability

The code and design improvements in a game are work after one game level
are playable. If this is so, you can continue with the lecture. Otherwise, make
one good game level.

Play-ability is superior with better graphics, smooth game object collisions,
audio effects, and better game mechanics. But that is not all. When all game
elements are improved, play-ability is automatically better.

For example, we can firstly improve the game graphics by changing the
quality of sprites. Then, go to data storage and use graphical resources to
improve the visual impression of the game screen. Finally, you can change
the previously set graphics on all elements except game props.

You can change graphics for game props by coding. In the create_props
function, you have methods for changing a sprite texture. Look at the
following example:

sprite.set_texture(textura)

And the texture is preloaded in the GDScript header, with a line of code and

reference:
onready var textura = preload(“res://stone background.png”)

Be aware of reference; it needs to have a link towards the game resource. As
a reminder to do so, select copy path after RMB.

Every change in the sprite size can be set rightly with extents for the

collision shape and scale for a sprite size. Look at the previously set code:
shape.set_extents(Vector2(15, 30))
sprite.set_scale(Vector2(0.3, 0.3))

When you put it right, you will have more quality graphics for the main game
prop (Figure 4.2).

For a game frame, you can use more quality graphics now (frame.png,
frame_decor.png). This time, we will use a tilemap with collision shape
tiles. For few game objects, StaticBody2D is OK, but in a situation like this,
tilemap is a better solution. Create tiles and set the game frame. Later, you
can change the game background color with a 2DSprite texture (BG.png).
Also, you can change the sprite texture for a KinematicBody2D with more
quality one as shown in the figure Pad_02_1. png.

BG stone background frame stone

Figure 4.2: Game props for better play-ability

Simple game prop
Our game prop is interacting with a rigid body (the game object ball). In the
interaction, the prop disappears from a screen, and the player gets the point.

First, we can change the texture for this prop. Use stone background.png
(Figure 4.3) as explained earlier, and see if you can set the scale and extents

correctly. Now, we can make some changes in coding. Add the property v in

your create_props function:
func create_props(prop_name, posx, posy, V):
var statB = StaticBody2D.new()
var coll = CollisionShape2D.new()
var shape = RectangleShape2D.new()
var sprite = Sprite.new()
If the variable v is one, this will be a simple prop(prop_a). For complex
props, you will use other values (2, 3, and so on). Look at the following

example:

for f in range(120, 1040, 40):
create_props(“prop_a” + str(i),f,190,1)
i+=1

Complex game props

What if we want to create some complex game props? For example, a ball
game object needs to interact more than once with a static game prop as
shown in the Figure 4.3. After two or more interactions, a game prop will
also disappear.

Figure 4.3: Game-play with static props

For this, we will remember interactions in a game. First, let’s set an array for

interaction placing:
onready var prob_b = []

Now, we can set the initial value to the array (put it in a ready function):
func _ready():
prob_b.append(“initial_value”)

As you know, every game object has a name. To set a node’s name, we use

set, and to get it, we use get. Look at the following example:
for f in range(1, 72):
if body.get_name() == “prop” + str(f):
body.queue_free() # delete object if name 1is right

If we, for example, want to delete a game object after a second interaction,
we can count interactions. In a situation where we have more than a few
game objects, we will remember the interaction in an array. In the following
code, the object will exist after the first and will be deleted after the second

interaction:
if body.get_name() == “prop” + str(f):
for f in range(0, len(prob_b)):
if prob_b[f] == body.get_name():
second interaction
pro = false
body.queue_free()
if pro == true:
first interaction
prob_b.append(body.get_name())
print(prob_b) # list’s objects names in output window

For a quality visual effect, use two sprite texture. After the first interaction,
the preceding sprite can be deleted. You can add the following or similar

code for a sprites textures:

if v ==
var sprite2 = Sprite.new()
sprite2.set_texture(textura2)
sprite2.set_scale(Vector2(0.083, 0.083))
sprite2.set_name(“sprite2”)
statB.add_child(sprite2)

Adding points can be done after each interaction or after the last one when an

object disappears from a game screen:

if pro == true:
body.get_node(“sprite2”).queue_free()
prob_b.append(body.get_name())
score += 1
$Label.text = “S C O R E: “ + str(score)

In the following code, you can see the complete function for two interaction
game props:
func _on_RigidBody2D_body_shape_entered(body_id, body,
body_shape, local_shape):
var pro = true
for f in range(1, 72):
if body.get_name() == “prop_b” + str(f):
for f in range(0, len(prob_b)):
if prob_b[f] == body.get_name():
pro = false
var pos = body.get_position()
body.queue_free()
if pro == true:
body.get_node(“sprite2”).queue_free()
prob_b.append(body.get_name())
score += 1
$Label.text = “S C O R E: “ + str(score)

Custom game prop

In the previous example, we learned how to create code generated game prop,
and now we will make a game prop using Godot IDE. First, add the
StaticBody2D node with collisionShape2b and Sprite2D as sub-nodes.

Next, add a script to StaticBody2D, and write the following code:
extends StaticBody2D

export var pos_x = 119.071

export var pos_y = 107.644

export var prop_img = preload(“res://4.png”)
export var prop_name = “shine_prop”

func _ready():
$Sprite.set_texture(prop_img)
.set_position(Vector2(pos_x, pos_y))
.set_name(prop_name)

1.png 4.png 2.png

Figure 4.4: Graphical resources for a custom game prop

Our custom game prop will have a few properties defined as export variables.
For a prop position, we use the pos_x and pos_y variables; for texture, we
will use the prop_img variable for images shown at figure 4.4, and for the
game prop name, we use the shine_prop export variable.

If we, for example, instantiate the game prop, we will have options for
different variable settings. Settings options will allow you to create a few
different variants of the same game prop, which is the main characteristic of a
custom game prop.

Let’s add a few code lines to cover collisions with a prop and scoring. First,
create a signal for body_shape_entered, and write the following lines of

code in the created function:
func _on_ShineProp_body_shape_entered(body_id, body, body_shape,
area_shape):
if body.get_name() == “RigidBody2D":
score += 9
$Label.text = “S C O R E: “ + str(score)
.get_node(“shine_prop”).queue_free()

Some score points will be added when the game ball (RigidBody2D) has a

collision with a prop collision shape, and the game prop is clear from the
screen (queue_free):

Generated custom prop

One of the great Godot features is scene instancing. Instancing a game scene
can be done with IDE or by coding. To code a custom prop, we will use a
previously created one. First, let‘s instance a game prop with a GDScript

code:
onready var scene = preload(“res://ShineProp.tscn”)
func _ready():
var instance = scene.instance()
add_child(instance)

Our custom game prop has some export variables so that we can set them:
func _ready():
var instance = scene.instance()
instance.pos_x += rnd * 40
instance.prop_name = “custom_prop_" + str(n)
add_child(instance)

To complete the previous code, we will add random numbers and integer

values for instantiate count. The code will look like the following example:
func _ready():

setting few custom props at random position
var rnd
var n = 1
for f in range(1,4):
randomize()
rnd = randi() % 22 + 1
var instance = scene.instance()
instance.pos_x += rnd * 40
instance.prop_name = “custom_prop_" + str(n)
n += 1
add_child(instance)

The coding used in the “for” loop iterate three times and instantiate the same
number of custom game props. All your custom props need to have different

names for collision detection:
instance.prop_name = “custom_prop_" + str(n)

We have the option to use other export variables so that we can change the

prop image:
onready var img_1 = preload(“res://4.png”)

func _ready():

setting custom prop at random position

for f in range(1,4):
randomize()
rnd = randi() % 22 + 1
var instance = scene.instance()
instance.pos_x += rnd * 40
instance.pos_y -= 40
instance.prop_img = img_1
instance.prop_name = “custom_prop_"” + str(n)
n += 1
add_child(instance)

If you want to have similar coding in an example game, look at the following

GDScript code part:
onready var scene
onready var img_1
onready var img_2

preload(“res://ShineProp.tscn”)
preload(“res://4.png”)
preload(“res://1.png”)

func _ready():
setting custom prop at random position
var rnd
var n = 1
for f in range(1,4):
randomize()
rnd = randi() % 22 + 1
var linstance = scene.instance()

instance.pos_x += rnd * 40
instance.prop_name = “custom_prop_" + str(n)
n += 1
add_child(instance)

setting custom prop at random position

for f in range(1,4):
randomize()
rnd = randi() % 22 + 1
var instance = scene.instance()
instance.pos_x += rnd * 40
instance.pos_y -= 40
instance.prop_img = img_1
instance.prop_name = “custom_prop_"” + str(n)
n += 1
add_child(instance)
setting custom prop at random position

for f in range(1,4):
randomize()
rnd = randi() % 22 + 1
var instance = scene.instance()
instance.pos_x += rnd * 40
instance.pos_y -= 80
instance.prop_img = img_2
instance.prop_name = “custom_prop_"” + str(n)
n +=1
add_child(instance)

Game menu

Now when we have a functional and playable video game, we can add a few
more things. These things will be game buttons for a game menu. So, we are
creating a straightforward video game menu.

First, add a node2D as an object pallet and rename it to MainMenu. The
settings for node2D are layer 1 and scale 0.3 (for both x and y). The
transform property is as follows:

X 0.3y 0

X 0y 0.3
X 0yo0

Next, add Sprite2bp and four TextureButton nodes for menu buttons. The

texture for a Sprite2b node is Table.png, (look at Figure 4.5) and other

suggested properties are as follows:
position (765, 1149)

rotation 0

scale (1.33, 175)

~ Table. png

Pla-_.,r hw&r png F’Ia:.r png Options. png Info.png E:-ut prg

Figure 4.5: Textures for a sprite and texture button nodes

Set all game buttons on the Sprite2D, and add textures. For example, the play
button has two textures. One is for hovering over a button, and the other is for
a normal game button state (see Figure 4.6).

And finally, you can code some functionality for these buttons. In the
following example, you will see how to code game-play and quit game
options.

Example:

func _on_Play_btn_pressed():
$RigidBody2D.set_use_custom_integrator(false)

func _on_Exit_btn_pressed():
get_tree().quit()

Example comment:

When the player clicks on a play button, a custom integrator (for a
RigidBody2D) sets to false. Thus, visually, the ball becomes susceptible to 2D
gravity and slowly falls towards the player bat. When a player clicks on the
Exit button, the game quits. Now, you have your first playable video game as
shown in the figure 4.6, and this is a good step towards some complex game
project.

Figure 4.6: Game menu and game elements

Conclusion

By creating our first playable 2D video game, you learned a lot. First, you
learned additional info about Godot IDE, but you must become more
experienced with GD Script codding. Then, for a variety of gameplay
solutions, coding is vital. Finally, you had the opportunity to apply
knowledge about 2D bodies and combine it with quality coding.

Also, you learned how to implement random numbers and how to apply the
for-loop and if branch combination.

In the next chapter, we will conclude our 2D game programming. Students
will learn how to make a turn-based 2D video game.

uestions

1. Did you understand game props?
2. What kind of game props are explained in this chapter?

3. Why are game props an essential part of a playable video game?

CHAPTER S
2D Adventure

It will be suitable for the student to learn gradually until this chapter. In this
chapter, you will have a game developer’s level of understanding. So,
things previously explained wouldn’t be repeated here. But still, we will like
to help you in the learning process. Therefore, I will put some references to
previously taught know-how. Adventure is one of the most desirable game-
play types. Therefore, we will create one 2D adventure. Of course, we will
use some of Godot IDE-defined game elements in the creative process, but
still many things will be solved by coding in a GDScript. Our adventure is a
turn-based game adventure, and players will use mouse and keyboard keys
for playing. So, one of the first things to learn can be a system for turn-based
game-play. So, let‘s start.

In this chapter, students will learn about turn-based game-play, game
character movement, 2D Platformer as a quest system, TileMap as
background, and coding for a platformer character.

Turn-based game-play

Initially, we can use buttons for this. With the Button node, we can quickly
solve mouse interaction and in-game field graphics. For mouse interaction,
we will use signalling, and for field graphics, we can use TileMap.

First, we will add the Button node to the new scene (2D_Adventure). We will
set size parameters in the rect property (inspector window) as 64x64. Create
a few more of them and put them like in a lane. We created six of them in a
vertical manner (Figure 5.1):

Figure 5.1: Buttons for turn-based game

It‘'s good to know that we can combine tile-map images as background
graphics for the standard button node in this game solution. Naturally,
therefore, students need to put nodes in good 2D positions for quality visual
performance.

Second, we will add a tile-map node as a game element. A tile-map node
doesn‘t have a TileSet, so you will need to create one. We will create a tile-
set in an inspector window as a drop-down option New TileSet. Next, we will
add some images to TileMap. Possible default graphics for TileMap are
visible in Figure 5.2:

Lot
PIETLmarratt ks
AR
SrbA kA
L L
Al AR AR A
B o
Pttt

e LN it
HAT R T

Figure 5.2: Possible images for a TileMap

The intention in a turn-based game is to simplify the game-character
movement. Therefore, we will create it as a Sprite node with the ability to
change the position graphically. For example, we will have a forward-
backward movement or up-down in a game as different players perceive this
scene. So, add a sprite node. For texture, use the default character image

(Figure 5.3).

Parameters for a texture are vframes 4, hframes 4, and frame 10 in an
animation property.

Game character movement

Now, we will start a coding movement for a game character. But, first, let‘s

define the character position with an array:
extends Node2D

var space = [0,0,0,0,0,0,1,0]

The array has an initial field and seven more areas. Because we have six
buttons, this will be six positions. Therefore, our game character is in the
sixth position, represented with the number 1 in the “space”array.

2?29 ®
- A
2?29 @
soeQ

Figure 5.3: Game character

Note: I hope you remember how to add the GD script to the initial
node. If not, see the introduction.

Your coding will change the character position after each move. So, it will be
fine if you create signals for all buttons. Also, you need to define one user
function and call it in all six button-created functions.

Example:

func _on_Button3_pressed():
uni_func(1)

func _on_Button4_pressed():
uni_func(2)

func _on_Button5_pressed():
uni_func(3)

func _on_Button6_pressed():
uni_func(4)

func _on_Button7_pressed():
uni_func(5)

func _on_Button8_pressed():
uni_func(6)

universal function for movement resolve
func uni_func(no):
pass

As you can see, every function will send a number to the uni function. The

number will represent an in-game position field. So, we can add some code to
define game field names (put in the user function and call it from a ready

function):

$Buttons.
$Button7.
$Button6.
$Buttons.
$Button4.
$Button3.

set_name(
set_name(
set_name(
set_name(
set_name(
set_name(

“Fielde”)
uFields”)
uField4”)
“Field3”)
“Field2”)
“Fieldl”)

Now, we can quickly get the field position for the game character movement:
var pos = .get_node(“Field” + str(no)).get_global_position()

And, we can set and tune position for a character:
pos += Vector2(32, 32) # tune position
$Sprite.set_position(pos) # set character pos

So, the code in the uni function will be as follows:

func uni_func(no):
var pos = .get_node(“Field” + str(no)).get_global_position()
pos += Vector2(32, 32)
$Sprite.set_position(pos)

The explanation of the user-defined functions is given in chapter three, but

some helpful code for button names can be as follows:
func _ready():

micro_menu()
func micro_menu():

$Buttons.
$Button7.
$Buttoné6.
$Buttons.
$Button4.
$Button3.

set_name(
set_name(
set_name(
set_name(
set_name(
set_name(

“Fielde”)
“Field5”)
“Field4”)
“Field3”)
“Field2"”)
“Field1”)

Now, start a game (F5). But, first, check the code, and remember that the
set_position() method defines the position of the Sprite node.

So, we can continue with something about gameplay. In this adventure, the
game character can move only to the first nearest field. Therefore, we will

add some coding:
func uni_func(no):
if space[no + 1] 1 or space[no - 1] =
var pos = .get_node(“Field” + str(no)). get global position()
pos += Vector2(32, 32)
$Sprite.set p051t10n(pos)
if space[no + 1]
space[no] =

space[no + 1] = 0

if space[no - 1] == 1:
space[no] = 1
space[no - 1] = 0

The code will verify if the game character is near to the click field (button).
Then, only if the game field is above (no+1) or below (no-1), the movement
will be possible. After that, the code will set a new character position and
define an empty game field.

Example:

if space[no + 1] == 1: # field above
space[no] = 1 # setting g.character pos.
space[no + 1] = 0 # define empty field

if space[no - 1] == 1: # field below
space[no] =1
space[no - 1] = 0

Gameplay

Our 2D adventure is a turn-based video game, and this means the game has
turn-based gameplay elements.

First, we will add action points. We can use a global Godot variable called
singleton for this. Simply put, a singleton is a script file with settings in the
Godot IDE. So, create one script file, click on the script tab and select New

script in the File menu. Write the following code lines, and save the file:
extends Node
onready var action_points
func _ready():

action_points = 2
Open the Project settings option in the project (main menu). Select the
AutoLoad tab (Figure 5.4). Select the path to the singleton.gd script file (opt
1 in Figure 5.4), and set the name for singleton (opt 2 in Figure 5.4). We use
singleton as the name for the singleton file. The Enable option needs to be
true, so you need to check it.

Now, we have action points as global variables. To use them, write the code
line as shown in the example.

Example:
$”/root/singleton”.action_points = 2

Froject Settings (project.godot)

resifsingletangd

Figure 5.4: AutoLoad tab of the project settings

Second, let’s add the period variable to singletons:

onready var period # write in the header

period = 0 # in the ready function

We can create a textured button for the next turn. When the player clicks on
it, the period will increase by one, and action points will get the initial value.
The texture for the next turn button is Button_1.png (you can use
Button_2.png for the hover button state). Create a signal, and write the

following code in a generated procedure:

func _on_TextureButton_pressed():
$”/root/singleton”.action_points = 2
$”/root/singleton”.period += 1

For the background, add two colored rectangles in a CanvasLayer node
(Figure 5.5).

Note: To remind you. First, add CanvasLayer as a node, and then add
two child nodes to it. Child nodes are ColoredRectangle nodes.

If you put it as suggested, you will visually get something as shown in Figure
2.5.

It’s good when action points are visible. Therefore, add one Label node, and
rename it as the AcionP. Set the Label position in the middle of the blue

background as shown in the Figure 5.5—Code user function as follows:
func writte_action_points():
$ActionP.set_text(“Action points: “ +

str($”/root/singleton”.action_points))

v

Figure 5.5: Colored backgrounds and next turn button

And call it from the next turn function:
func _on_TextureButton_pressed():
$”/root/singleton”.action_points = 2
$”/root/singleton”.period += 1
writte_action_points()
It will be good to create a label node for a period variable. So, add a label
node, and rename it to PeriodLabel. Set a label position on the left-hand side
of a blue background. Add a code line in the writte_action_points

function:

$PeriodLabel.set_text(“Period: “ +
str($”/root/singleton”.period))

Good, now gameplay has the action point and period system set. So, a player
can make two actions, and then go to the next period. But we need to put
some coding first if we want this to work without negative action points.
Let’s add one conditional branch to the uni function before the move

calculation:
func uni_func(no):
if $”/root/singleton”.action_points > 0: # conditional branch
if space[no + 1] == 1 or space[no - 1] == 1: # move calc.
Now, the game character can move when it has action points. Otherwise, the
player needs to start a new period.

Textual description of the area

Do you know what the main characteristic of 2D adventures was? Yes, you
are right; it’s was textual description of a game area. First, there was text
alone in the early adventure era, then came the combination with a pixel
image, and finally animations. When the player goes to some new game area,
the area description shows a textual narration. For example, if the player goes
to the next large room in some game adventure, then area descriptions pop
up.

Area description example:

"You are entering a large room. There are items on a table and a

wall. You see: silver sword, silver cross, holy water, and
hawthorn stake."

One of the ways to create a game area description is an array. So, we will

create one:

var field_text = [“", # put description code lines in a script
header

“You are at some small plain scape, and the water surface is
around.”,

“You are in the forest. Beautiful nature fills you with optimism
and energy.”,

“Green forest surrounds you with the sound of nature and
beautiful view.”,

“Water surface is almost all you see from this small plain
scape.”,

“You are at some small plain scape, and the water surface is
around.”,

“You start the adventure from some plain scape. Large water mass
is visible around.”]

Next, we need a text label for the area description. A suggestion is to use the
RichTextLabel node for it. With this node, we can set the font and size for a
text. Also, RichTextLabel is very good with a large portion of text. So, add
one in the upper part of a game screen. Put the default text for it. For
example, the default text can be: You are in some unknown forest land full of
intact nature with colorful natural sounds.

It will be nice to have a background for it. Therefore, add a sprite node with a
texture (bt_text.png) as a background, shown in the Figure 5.6. Also,
adding additional coloredRectangle to a CanvasLayer will be good.

Note: When you arrange colored rectangles, note that the upper one in
the IDE is below in a game screen.

Add one line in the uni function for a functional coding as shown in the
example:

Example:
$RichTextLabel.set_text(field_text[no])

Figure 5.6: Game area description with RichTextLabel node

The different text will be in a RichTextLabel for each game field.

2D platformer as part of a quest system

We have a good gameplay so far, and now let’s continue. Game quests are
part of many different game types. A player can mostly find it in adventures
and RPG (Role Played Games). So, we can create a quest system. A game
quest will pop up as optional when game characters go to the unexplored
field.

The quest system will have many micro platformers for playing. So, we will
create a new 2D scene, 2D character, background, and game props. All this
will be part of every micro quest as a 2D platformer game.

We will use KinematicBody2D as the main 2D character, TileMap for
background, and Area2D for game props. After creation, we will instantiate a
scene in the main game scene. Instantiation will be done with coding when
the player goes to the unexplored game field.

TileMap and background for a platformer:

First, we will create a new 2D scene (name it 2D_landscape.tscn). Then, we
will add a TileMap node. Start adding tiles in a new tile-set. Our goal is to
create a game background (Figure 5.7).

Note: Tiles can have a collision shape. Every tile for the game character
path needs to have it. TileSet size 32x32, and quadrant size 16. When
you add enough tiles (Figure 5.8a) to a tile-set, start placing them in a
game scene. Try to create a similar game scene as shown in Figure 5.7:

Figure 5.7: 2D platformer game environment

Our game character needs a path for movement creation. For this, some tile-
set tiles need to have a collision shape. For example, you will set collision
shapes for 01, 02, 03b, 04a, bridge-2, and similar, but not for obj_direction,
signboard, spring-1, and like (see image description in Figures 5.8a and

5.8b):

bg-barrel

bt f B IPNE

byg-crate bridge bridge-2 bridge-3 brucdge—d cave-daor

03a

Figure 5.8a

e &“"Hzgs e 4

cawve-door-2 crate-3 grass-chift ladder oby-direchion-st... ob)-direchon-st.. pine-tres

':';;:,_.‘ @

platform-float platform-ome=way rock signboard spikes spring-1 spring-2

spaing-3 spefing-4 stone water-middle waler-surface

Figure 5.8b: Images for a tiles

When adding tiles to a game scene, try to have a rectangular shape of all
scene objects. For this, you will may be need another TileMap node. So, right
click on a root node, and add TileMap. Then, create a new tile-set with two
tiles (texture Repeated.png and Water -surface.png).

Note: Tile-set cell size 64%64, quadrant size 16.

Now, we will define a game space for this scene. First, you need to add a
StaticBody2D node with CollisionShape2D as a sub-node. Then, create
additional and similar staticBody2D, and put them as a game scene border
on both the sides. Collision shapes of the staticBody2b nodes will define the
movement space for our game character.

We are almost ready to create a game character. Therefore, for a game
background, we need to create two sprite nodes and a RichTehtLabel. Then,
we need to put them in an upper-middle part of a game scene—set sizes
accordingly (Figure 5.9). Finally, we will use them as info panels when a
player finds resources in a game. Info panel game objects are not visible
when the game starts. So, you can set its visibility in an inspector window.

Note: Find visibility in an inspector window and uncheck the visible
property for info panel game objects.

Figure 5.9: Info panel in a game scene

Player character

Now, let’s create a player character. For this, we will use KinematicBody2D
with the collision shape and animated sprite. Animated sprite will give a
necessary illusion of movement, and we have already created a good
background. The player will use keyboard keys for it, right arrow key for
right movement, and left arrow key for left movement.

So, let’s create. First, we will create a new scene named PlayerCharacter.
Add a KinematicBody2D. Next, add a CollisionShape2D (CapsuleShape2D
as child node) and animated sprite (child node).

Note: We use 2D game elements, so select blue AnimatedSprite.

Now, we will set a walking movement animation. For this, select
AnimatedSprite and create new Sprite Frames (1 — Figure 5.10) in the
inspector window (frames property). Then, click on SpriteFrames and create
NewAnimation (2 — Figure 5.10, rename it to Walking). Load resource (3 —
Figure 5.10, walking animation).

Note: Press shift, select first, and then the last images to select all
walking resources (pictures). If you do it all right, frame images will be
visible with a frame number.

Set scale for Animated Sprite to 0.12x0.12, and speed scale to 6.
Coding for a player character:

We need to code in a PlayerCharacter.tscn and 2D_landscape.tscn scene.
So, let’s start with a current one (PlayerCharacter.tscn). Save it.

Figure 5.10: AnimationSprite dialog window

There will be two game character movement, move left and move right at this
game stage. So, I suggest using the move_and_collide method in a process
function.

Example:
func _process(_delta):
if Input.is_action_pressed(“ui_right”):
$hero.move_and_collide(Vector2(speed, 0))

We will also need to define a character speed and code for a stopping pattern.
A stoping code pattern can be realized with a combination of two methods,
is_action_pressed and is_action_just_released.

Example:

extends Node2D

Setting initial variables

var speed

func _ready():
$KinematicBody2D.set_name(“hero”)
speed = $”/root/singleton”.speed

Character movement

func _process(_delta):
if Input.is_action_pressed(“ui_right”):

$hero.move_and_collide(Vector2(speed, 0))

if Input.is_action_just_released(“ui_right”):

$hero.move_and_collide(Vector2(0, 0))

Note: The default value for a speed is 1. It will be good to set it in a
singleton script.

A similar code will be for a left character movement.

Example:
if Input.is_action_pressed(“ui_left”):
$hero.move_and_collide(Vector2(-speed, 0))
$hero/AnimatedSprite.set_flip_h(true)
if Input.is_action_just_released(“ui_left”):
$hero.move_and_collide(Vector2(0, 0))

Note: We added a line with a set_flip_h method for a character image
flip when moving to another side. You can add a similar code line for a
movement right with a false value.

Next, let’s use our Walking animation. Look at the following example.

Example:
func _process(_delta):
if Input.is_action_pressed(“ui_right”):
$hero.move_and_collide(Vector2(speed, 0))
$hero/AnimatedSprite.set_flip_h(false)
$hero/AnimatedSprite._set_playing(true)
if Input.is_action_just_released(“ui_right”):
$hero.move_and_collide(Vector2(0, 0))
$hero/AnimatedSprite._set_playing(false)

As you can understand, we use the _set_playing method with two different
values for animation play.

Usually, in a 2D platformer, jumping is an option. Therefore, we will code
craft a 2D gravity.
Example:

put it in a process function

$hero.move_and_collide(Vector2(0, 1)) # 2D gravity
Our game character scene may be functional. So, we need to instantiate it in a
game scene. For this, open a 2D_landscape.tscn scene, and put a few lines

of code:
var character = preload(“res://PlayerCharacter.tscn”)

func _ready():
var s = character.instance()

s.set_position(Vector2(130, 450))
.add_child(s)

Note: Set the position value accordingly to your 2D surroundings.

In the previous code example, the scene is firstly preloaded and then
instanced as the variable (var s). After that, the position is set and then added
as a child node.

So, what are you waiting for?
Let’s check whether your mumbo-jumbo work has effects!
Play a 2D_landscape game scene.

Of course, it will be marvelous if all works fine, but that is very rare in a
world of game codding. So, check your coding first. In this stage of work,
you can use finished and workable files from a book file repository. And
learn from them.

Simple quest system:

We have a turn-based game part (2D_Adventure.tscn) and a platformer part
(2p_landscape.tscn). It will be good to instantiate the platformer part
somewhere (layer node, for example) in a turn-based game part.

Note: Add a layer node and rename it to “Platformer”.

Instantiation can be done when the player presses a button.

So, add a button with the text Start a quest. Set the signal procedure, and
add the following code.
Example:
onready var platf_scene_1 = preload(“res://2D_landscape.tscn”)
func _on_quest_btn_button_down():

var platform = platf_scene_1.instance()

$Platformer.add_child(platform)
Therefore, when the player presses a quest button, the platformer scene is
visible in a layer part of a game screen. Layer nodes have good settings for a
position, so use them wisely.

Conclusion
This chapter strengthens your knowledge about making 2D games. We

learned about turn-based games and platformer 2D games. We also learned
about new nodes like AnimationSprite, RichTextLabel, CollisionShape2D
types, and so on. I hope your GD Script coding is better due to this chapter’s
coding challenges. With this chapter, we are concluding our 2D game
programming, and in the next one, we will start learning about 3D video
games programming. Students will have the opportunity to learn about the
Godot 3D environment and start making their first game prototypes.

uestions

1. What are singletons, and why do we use them?
2. Which node do we use to simulate the turn-based game, and why?
3. Explain the advantages of the RichTextLabel node.

CHAPTER 6
3D Math and 3D Physics

The 2D game making is behind us, and we see a vast untouched space of
the 3D game making. Everything you learn counts because crafting 3D
games is not so complicated when you know to make 2D video games.

Creating a 3D game is a joyous process when you know. But, first, what is
wise to learn about 3D video game making? Of course, the main
characteristics are 3D graphics, so you can guess! 3D Physics is one of the
main things to learn. And when you have 3D thrills in-game, you will need
something to compute all this, which is 3D Math.

So, prepare yourself because a new chapter of your learning adventure starts
soon.

Making a 3D game for fun is not so expensive, but still you need a modern
computer with average capabilities. And when you create it by yourself, you
will need to obtain 3D assets, which can be expensive than 2D. In this book,
you will have some 3D assets for games, but this teaches you how to do
something in a 3D game environment.

If you decide to make a commercial 3D game, you will need a quality
computer with an excellent GPU and speed memory. Also, making a 3D
game by yourself is a gigantuous project, so the developer’s team is one of
the best suggestions I can give you.

So, let’s go!

In this chapter, students will learn about introduction to 3D games, spatial,
vector3, creating 3D game objects with a GD Script, 3DMath, StaticBody,
RigidBody, RigidBody methods, prototyping a game scene and game props,
and important steps in a prototype testing process.

Introducing the 3D game IDE

We will start with practical things we already know. But, first, we will create
a new project in a project manager window. Then, we will give it a name, for

example, My first 3D world creation. Next, we will select a higher visual
quality renderer (OpenGL ES 3.0 in ver.3).

When the project starts, create a 3D scene. With a 3D scene, the root node
will be Spatial.

Your developer’s environment is now in 3D. Use the MMB wheel for
zooming, hold RMB for panning a scene, and you can slowly move through
3D space with W-S-A-D keyboard keys when holding RMB. Hold MMB and
move the mouse for a viewpoint change. We will use the default 1-viewport
perspective scene view. You can change this to an orthogonal view with more
viewports (top, left, right, front, rear, bottom).

Now, you are using red 3D nodes. So, let’s add one node. First, add a
StaticBody3D to the scene. Next, add the Mesh instance as a subnode, and
additional subnode - collisionShape3D. And now, settings for nodes. If you,
for example, open transform for StaticBody, you will see 9 parameters. Three
parameters are for translation, an additional three for rotation, and 3
parameters for a scale. Why? A 3D space has a vector3 variable with one
additional parameter compared to a 2D space. So, now you are working with
X, ¥, and z. But if you still need a 2D explanation, let me say x is length (red),
z is the width (blue), and y is the height (green).

Transform settings for a StaticBody are: translation 0x0.549x0; rotation
0x0x0; scale 9x0.3x9; and matrix transform 9x0x0; 0x0.3x0; 0x0x9;
0x0.549x0. When writing settings, first input transform, and then just check
the matrix transform (local object settings).

The static body in 3D space is similar to a StaticBody2b and doesn’t move.
Methods are almost the same: friction (float), bounce (float),
physics_material_override (PhysicsMaterial),
constant_linear_velocity (Vector3), and constant_angular_velocity
(Vector3).

Note: A mesh is a collection of vertices, edges, and faces that defines the
shape of a 3D geometry object.

Add a new CubeMesh to a MeshInstance node, and set translation 0x-1.82x0.

And now, we need to define the collision space for this game ground
(MeshlInstance). So, we need to add a new BoxShape to a CollisionShape,
and set it accordingly. Move the object with the mouse (press W), rotate (E),

or scale (R).

Add a directional light node. Next, add a camera node. Camera settings:
current on, translation 0x11.39x23.17, and rotation -21.3x0x0.

In 3D games, you need to have at least one camera (current). So, one of them
needs to be set as current when you have more. You can save and test this
scene. It will be good to set the camera so the game object is visible as a
central one.

Creating a 3D game object with a script

You can code a 3D game object with a GD Script. The procedure is similar to
making a 2D game object. So, the 3D game Math is almost the same as 2D
game math, but there are differences.

We will start with a RigidBody node. Look at the following example.

Example:
var rigid = RigidBody.new()

A rigid body will need a collision shape, and a shape type needs to be
defined. The size setting for the collision shape is with a set_extents.

Example:

var coll = CollisionShape.new()

var shape = BoxShape.new()
shape.set_extents(Vector3(1, 1, 1))
coll.set_shape(shape)

Now, let’s set RigidBody’s (translation parameter) size and combine coding
in a function.

Example:

func create_cube_mesh(n, m, j, x):
var rigid = RigidBody.new()
rigid.set_translation(Vector3(n, m, j))
var coll = CollisionShape.new()
var shape = BoxShape.new()
shape.set_extents(Vector3(1, 1, 1))
coll.set_shape(shape)
mesh code will go there
rigid.add_child(coll)
.add_child(rigid)

Note: In the 3D space, we use 3D game objects. Meshes can be basic 3D
game objects.

Now, we will add coding for a cube mesh.

Example:

var mesh = MeshInstance.new()

var mesh_shape = CubeMesh.new()

var type = SpatialMaterial.new() # mesh material
mesh.set_mesh(mesh_shape)
mesh.set_material_override(type)
rigid.add_child(mesh)

In 3D game making, we can define different materials for game objects. In
addition, 3D Physics usually renders other light interactions depending on the
surface material.

So, let’s add a script to the root node (if you didn’t) and add the following

code:

extends Spatial

var cube_colore = [0, Color.red, Color.aliceblue, Color.azure,
Color.blue, Color.brown]

func _ready():
var x = 1
for i in range(1, 4, 1):
for n in range(-4, 6, 3):
create_cube_mesh(n, 12, i, x)
X += 1
if x ==
x =1
func create_cube_mesh(n, m, j, X):
var rigid = RigidBody.new()
rigid.set_translation(Vector3(n, m, j))
var coll = CollisionShape.new()
var shape = BoxShape.new()
shape.set_extents(Vector3(1, 1, 1))
coll.set_shape(shape)
var mesh = MeshInstance.new()
var mesh_shape = CubeMesh.new()
var type = SpatialMaterial.new()
type.set_albedo(cube_colore[x])
mesh.set_mesh(mesh_shape)
mesh.set_material override(type)
rigid.add_child(mesh)
rigid.add_child(coll)
.add_child(rigid)

You have a more less known code for generating game objects with the
nested for loop. For example, the set_albedo method will set a color for a

spatial material from an array of different colors. You can try to see how this
works (Figure 6.1):

Figure 6.1: First 3D game scene

We will add one function with computing and random numbers to see
additional 3D math examples. First, we will add a button, and set a button

signal. Then, we will add the following GD Script code:
func random_create():
var x = 1
for i in range(1, 4, 1):
for n in range(-4, 6, 3):
randomize()
var o = rand_range(1, 21)
create_cube_mesh(n, o, i, x)
X += 1
if x ==
x =1
func _on_Button_pressed():
random_create()

Again, you can test to see the generated game object after a button press. You
can change the range in the first for loop from 1,1 to 1,6 to see a difference.
The suggestion is to work a little with your first 3D scene to become more
comfortable with a 3D IDE and GD Script coding in a 3D game space.

Task: Increase the size of StaticBody (ground game object) by scaling. Then,
add a RigidBody with the collision shape and cylinder mesh. Set it similar to
the Figure 6.2.

Note: Try to use F for focusing the object and hold Ctrl for the grid
object movement.

I Futaes 30 e

Figure 6.2: 3D task

RigidBody has a lot of similar methods for the 3D game object movement.
The developer can add_central force, applay_centar_impulse, or
set_axis_velocity for a similar 3D activity. With the set_axis_velocity
method, we can create temporary velocity for an object in defined ways (see
the effect in Figure 6.3):

Figure 6.3: Effect of set_velocity method

3D models in a game scene

The main characteristic of an excellent 3D game is a game model. Game
models are usually created in specialized software and prepared for game
engines. Nevertheless, there are some things worth knowing about game
models. When you, for example, obtain a 3D game model, you will need to
know information about polygons, vertices, textures, materials, rigged status,
game ready, UV mapped status, and unwrapped UVs status. These terms can
be new for you, so let me explain them.

Polygon is a plane figure with many lines connected and closed together
(polygonal chain or circuit). The segments of a polygonal circuit are called its
edges or sides. The points where two edges meet are the polygon’s vertices or
corners.

A texture map is an image mapped to a shape or polygon (bitmap or
procedural).

A material controls how a 3D object appears on the screen, which means that
most materials take a texture as a parameter.

In our example of the 3D model, we will use a compact one (polygon O,
vertices 0) with texture and material.

Rigged is necessary when you have a skeletal and animated game object for
object internal movement of rigged (connected) parts. Making a 3D game
ready object is a process that produces low-poly or high poly game graphics.
Low-poly uses texture filtering, and high poly uses polygons to determine the
surface detail of the game object.

UV mapping is the 3D modeling process of projecting a 2D image to a 3D
model’s surface for texture mapping. Always use UV mapped game objects
in your game projects. Our first 3D model is UV mapped. The process of
creating a UV map is UV unwrapping, and the result can be overlapped or
not overlapped UV map.

You can now prepare a game scene for a game character.

Task: Find the .obj file (The Limited 4.obj) in the file repository and add it
to the resource folder. You can move the file by dragging and dropping it
from the file folder to the resource folder. Add a KinematicBody node (name

it character) with a collision shape.
Drag the .obj file to the scene. Put it as a child node to the KinematicBody.

Scale for a mesh (.obj object) is 0.15x0.3x0.15. It will be good to set colors
for a mesh. Use a spatial material and set the albino color for game character
parts as shown in Figure 6.4:

Figure 6.4: Game character material(colors)

We can add some coding to the button press function:
func _on_Button_pressed():

$Character.move_and_collide(Vector3(0,0,1))

random_create()
The move and collide method moves the object till collision occurs with
another game object. In our situation, we will have a short-distance
movement. Then, the game object will repeat the action as shown in Figure
6.5, with each button click:

Figure 6.5: Game character movement

Material texture

As learned earlier, one of the game material definitions is texture. So, how
can we add one? First, search for the albedo color type and add a texture for
the spatial material. Next, find a www.cadnav.com_Plastic_0033.jpg file,
and add it to a resource folder. Then, add a file as the material texture for one
of the game character parts. For example, the fifth material is a character
body material, and you can add a texture to it.

If you start a game scene, you wouldn’t see a texture on a material.
Therefore, you can add a texture to a ground mesh or use coding. A
suggestion is to code some simple zoom as shown in Figure 6.6 for a camera

to see the material’s texture:

func _on_Button_pressed():
$Character.move_and_collide(Vector3(0,0,1))
$Camera.set_fov(21)
random_create()

Note: The fov is the camera field of view in degrees when using the
perspective projection as shown in the Figure 6.6.

Figure 6.6: Spatial material with texture in a game character

Prototyping a 3D video game

You are reading an essential topic for saving a lot of your time, money, and
creative energy. However, the fact is that making a 3D game is expensive,
time-consuming, and energy-consuming. So, you will do this in a complex
way, or you will understand and implement game prototyping.

Prototyping is making a functional video game with as low-quality graphics
as possible. So, don’t think about materials, textures, lighting, shader, and so
on because they are not crucial for a functional video game.

Your prototype video game can be something to discard after testing. With
testing, you need to comprehend all concepts of functionality and game-play.
After that, you can rebuild the game structure in a limited time, such as 9
hours of standard working time. If you need more than 3-9 hours for
rebuilding, your prototyping is gone too far.

Continuing with the topic, I will use the intro scene term to explain
prototyping. Therefore, we will design a room with walls, windows, table,
chairs, bed, and locker for our intro scene. We will also need a game
character and script for character movement.

We wouldn’t add any game assets, unique materials, or textures in the intro
scene. However, we can use spatial materials with albino color properties.
Coloring will give us some look but wouldn’t drain time and energy.

Prototyping with CSG

The CSG stands for Constructive Solid Geometry. You can create various
3D prototyping objects with different CSG nodes. For example, shapes can
be a Box, Cylinder (and cone), Sphere, Torus, Polygon, and Mesh. In
addition, a developer can combine primitives under a CSGCombiner node.
Every primary CSG node has three shape operations: union, intersection, and
subtraction.

Note: Shape operations work when nodes are under CSGCombiner.

So, let’s continue with an example. We will create a wall with two window
spaces for two sides of the game scene and one blank wall on the third side.
First, we will make a blank wall with a CSGBox node. Therefore, we will
add a CSGBox node.

It will be good to change the scale for our ground object (StaticBody) to
21x1x21. Rename the created CSGBox to A_wall and set: width 0.9, height
15, depth 39, operation union, and collision to on. Then, move it to one side
of the scene (behind a game character), or use translation as -20x7x0.

Next, we will create a wall with windows opening. In this, we will use a
combiner CSG node, so add a CSGCombiner node (rename it to
wall with_windows). A combination will be with three CSGBox nodes. So,
duplicate (Ctrl + D) an A_wall node, and put it under the wall_with_windows
node.

Now, we can add the CSGBox node as a window. Node settings are width 2,
height 6, depth 6, operation subtraction, and collision to off. Move a node
(hold Ctrl), and put it somewhere in the wall. Subtraction will be visible in
the IDE. Duplicate the same node, and put it as another window. And now,
you can duplicate a wall with_windows and put it on another side of a game
scene. Set the use collision to on for both wall with_windows combined
objects.

A few things more, and we can test a scene.

But, first, let the set camera follow our game character’s movement. So,
move the camera node and put it under the game character node (as subnode).
Then, change a camera position behind and above a game character. Finally,
use the camera preview to see what you are doing as shown in Figure 6.7.

Now, we need movement coding (movement with arrow keyboard keys):
func _process(_delta):
if Input.is_action_pressed(“ui_down”):
$Character.move_and_collide(Vector3(0,0,-0.1))
if Input.is_action_just_released(“ui_down”):
$Character.move_and_collide(Vector3(0,0,0))
if Input.is_action_pressed(“ui_up”):
$Character.move_and_collide(Vector3(0,0,0.1))
if Input.is_action_just_released(“ui_up”):
$Character.move_and_collide(Vector3(0,0,0))
if Input.is_action_pressed(“ui_right”):
$Character.move_and_collide(Vector3(-0.1,0,0))
if Input.is_action_just_released(“ui_right”):
$Character.move_and_collide(Vector3(0,0,0))
if Input.is_action_pressed(“ui_left”):
$Character.move_and_collide(Vector3(0.1,0,0))
if Input.is_action_just_released(“ui_left”):
$Character.move_and_collide(Vector3(0,0,0))

Also, put a ready function content under a comment:
func _ready():
pass
var x = 1
for 1 in range(1, 4, 1):
for n in range(-4, 6, 3):
create_cube_mesh(n, 12, i, x)
X += 1
if x ==
x =1

HHHHHHFF

And now, you can test a game scene as shown in the Figure 6.7.

Figure 6.7: Game scene prototyping

Game props for the intro scene

What are game props? You know it; a game object with a purpose. Simple
ones have only a collision set, and others have more functions. We will first
have game props in our intro scene with a collision. I would like you to create
it! In addition, make it with CSG nodes.

A table can be your first 3D game prop. You can create it with CSGBox
nodes (union operand) and CSG combiner. I would like to give an example,
create a table leg, duplicate and set position for a pair, and duplicate again.
After you set table legs, add a tabletop.

When you are confident with this, create a chair game prop.

Note: You will now understand how game developers talk about
screens like give me more and bigger ones. Nevertheless, you will learn
to use views and keyboard shortcuts for better 3D editing.

Bed as a game prop is your next challenge, and after that, a locker. Again, the
suggestion is to use different operators because it’s not wise to solve all with
the union CSG operator. So, maybe you will need to use subtraction with
spheres to create a pillow. Moreover, when creating a locker, you can make
something with subtraction and an intersection.

When you finish any game props, enable collision in a root one (usually a
combiner node). Additionally, one reminder! Don’t spend too much time
creating game props. No need for perfect ones; they are for testing. Refer to

Figure 6.8:

Figure 6.8: Testing game scene

Purpose of an intro scene

The intro scene shown in the Figure 6.8 is functional, and you can start
testing. So what are the wise things to do?

e Check collision and collision shapes; Test how game characters interact
with a collision of game objects.

e Work to improve vital parts of the game code.

e Test main game concepts and game-play; See how input parameters for
moving compute.

We can, for example, improve the input code sequence in the process

function. Let’s see the following code:
func _process(_delta):
if Input.is_action_pressed(“ui_down”) or
Input.is_action_pressed(“move_backwards”):
$Character.move_and_collide(Vector3(0,0,-0.1))
if Input.is_action_pressed(“ui_up”) or
Input.is_action_pressed(“move_forward”):
$Character.move_and_collide(Vector3(0,0,0.1))
if Input.is_action_pressed(“ui_right”) or
Input.is_action_pressed(“move_right”):
$Character.move_and_collide(Vector3(-0.1,0,0))
if Input.is_action_pressed(“ui_left”) or
Input.is_action_pressed(“move_left”):

$Character.move_and_collide(Vector3(0.1,0,0))

In all situations, when we use the move_and_collide method, we need to set

a vector for stopping a movement. Look at the following code example:

if Input.is_action_just_released(“ui_down”):
$Character.move_and_collide(Vector3(0,0,0))

if Input.is_action_just_released(“ui_up”):
$Character.move_and_collide(Vector3(0,0,0))

if Input.is_action_just_released(“ui_right”):
$Character.move_and_collide(Vector3(0,0,0))

if Input.is_action_just_released(“ui_left”):
$Character.move_and_collide(Vector3(0,0,0))

I would like to suggest code improvement. For example, we can create an
array and process the same input parameters in a for loop. One of the
standards for input keys is WASD, and we will also use it. So, for example,
W is in the input map as move_forward. This code improvement will look

like the following:

part for a code header

onready var act_released = [0, “ui_down”, "move_backwards”,
"ui_up”, “move_forward”, “ui_right”, “move_right”, “ui_left”,
“move_left”]

part for a process function
func _process(_delta):
if Input.is_action_pressed(“ui_down”) or
Input.is_action_pressed(“move_backwards”):
$Character.move_and_collide(Vector3(0,0,-0.1))
if Input.is_action_pressed(“ui_up”) or
Input.is_action_pressed(“move_forward”):
$Character.move_and_collide(Vector3(0,0,0.1))
if Input.is_action_pressed(“ui_right”) or
Input.is_action_pressed(“move_right”):
$Character.move_and_collide(Vector3(-0.1,0,0))
if Input.is_action_pressed(“ui_left”) or
Input.is_action_pressed(“move_left”):
$Character.move_and_collide(Vector3(0.1,0,0))
for i in range(1,8):
if Input.is_action_just_released(act_released[1]):
$Character.move_and_collide(Vector3(0,0,0))

Note: Delete the whole prototyping project.

Conclusion

In this chapter about 3D game making, we learned about using the Godot

IDE for game development in the 3D environment. Nevertheless, we also
learned about game prototyping and how prototyping is a quality way of
preparing a good video game. In the next chapter, we will deep dive into 3D
game making and understand the primary process in creating a game
character.

Questions

1. What does CSG stand for?
2. Why is game prototyping so important?
3. What is an intro scene?

CHAPTER 7

Project: 3D Platformer

In the early days of 3D games, developers started with closed 3D spaces like
dungeons, underground shelters, or caves. We will not take this antiquated
approach. Instead, as the chapter title says, we will start with a 3D platformer
as our first 3D game project.

Because every good project starts with a plan, we will plan a 3D platformer.
After planning, you will create a prototype scene (optional), and then we can
create a 3D character. After a game character is designed and tested, we can
add props and a 3D game environment.

Before we continue, explaining a 3D platformer concept will be good. In a
3D platformer game, game character move in the 3D space with different
height platforms, obstacles, and bonus props. The two types of 3D
platformers are standard and 2D simulated. When you play a game with 3D
props made for 3D space in a 2D space view, you play a 2D simulated 3D
platformer.

In this chapter, you will learn planning, character design, props, and
environment adding for a 3D platformer video game.

Planning a 3D platformer

In modern 3D games, planning is an ordinary initial action. Developer teams
always give a lot of time solving problems and questions before they appear
in a development. Planning is also a vital part of game design for a solo
developer.

What type of game do we create? What resources do we need for realization?
Do we have a quality team and suitable equipment for 3D game
development?

Nevertheless, what is game planning for a solo developer when we put
developers aside? What will be parts of your planning if you make a 3D
game for fun?

You can have two approaches. Plan everything in front, or create it step by
step. If you decide for a “step by step” approach, you will create a new
project, and then you will again determine what will be the next creative step.

Intuitive planner

So, we will start with a new project and then with a new 3D scene. Setting
the ground and camera will be the next activity. Then, some number of
meshes will define the ground.

After making a game ground generator, we can add a 3D asset as a game
character and start a coding movement.

Note: Usually, in 3D games, every asset is individuality put in a 3D
environment. But we can’t do it now because we are solo developers,
and we learn game development—also, we want to have fun when
creating a 3D project.

We will take a wise approach with ground generators, then adding a new
game space will be easy. The ground generator is suitable for a 3D platformer
we create, but it’s not ideal for other game types like RPG adventures.

When we finish with a movement for the main character, it will be suitable to
test it. Then, we will use the test-improve approach to create a good game
character. Finally, the game character will use a skeletal mesh to create
various movements in a 3D space.

Adding game assets will then help in creating exciting game-play. For
example, the game character can walk, run, or jump. We can slowly put game
assets in a scene. It’s not necessary to set all 3D environment props at once.
The game menu, audio props, music, and animations we can add after the
game have good functionality (game-play).

Character design

We will have a first-time game character with 3D skeletons in this game. As
Godot documentation says, support for the skeleton node is quite rudimentary
(in Ver 3.1), but we can have enough manoeuvring space for our project. If
we, for example, use a humanoid 3D asset as a game character, we can set
and animate basic movements like walking, running, or jumping.

So, let’s find a suitable low poly 3D game character. But first, I would like to
remind you that we need a rigged 3D model. Low poly, rigged, and similar
terms are explained earlier in the topic 3D models in a game scene, see
Chapter 6, 3D Math and 3D Physics.

Preparing a game scene

Now, we will prepare a game scene for a game character. So, create a new
project (high visual quality) with a name like Game_Project_3D_platformer.
Then, select a 3D scene, and rename the spatial node to World. Next, select
the spatial node, and add a GDScript file. Finally, delete all comments, but
leave the ready and process function.

You can add an underscore to the delta property for now. So, the code will
look like the following:

extends Spatial

func _ready():
pass

func _process(_delta):
pass

It will be good to add a camera node and save a scene (File | Save).

Good, select the root node, and add a MechInstance node. Set the new
CubeMesh in the inspector window. Set size as 3x0.3x3, and watch for
transform values (need to be the default). Create a MeshInstance (as a child
of a static body) with coding, as shown in the following example.

Example:

func _ready():
var stat = StaticBody.new()
var coll = CollisionShape.new()
var shape = BoxShape.new()
shape.set_extents(Vector3(3,0.3,3))
var mesh = MeshInstance.new()
var mesh_type = CubeMesh.new()
mesh_type.set_size(Vector3(3,0.3,3))
mesh.set_mesh(mesh_type)
stat.add_child(mesh)
stat.add_child(coll)
.add_child(stat)

A mesh instance previously made in the IDE can be hidden or deleted. So, set
a camera, and test a scene. In our camera settings, we, for example, have

0x3x4.5 for translation and -12x0x0 for rotation degrees.

Note: It’s wise to set the world.tscn as the main scene (Project settings |
Run).

We need a vast space for character movement testing, and for that, we will
add a few code lines. Our character will move in one direction; for example,
from left to right. Our code will be helpful in this movement because we can
generate ground meshes from it.

Look at the following example:
func _ready():
for n in range(-12,15,3):
put code from the previous example

Set camera translation to 0x7x10, and test a game scene.

We can continue with the game scene preparation for a game character if
everything is fine.

Next, we can add a material for a mesh instance. Look at the following

example for game material creation:

var image = Image.new()
image.load(“res://texture_plastic.jpg”) # file is in ch.7
resource folder

var material = SpatialMaterial.new()

var new_texture = ImageTexture.new()
new_texture.create_from_image(image, Q)
material.albedo_texture = new_texture
material.albedo_color = Color.greenyellow
mesh.set_material_override(material)
mesh.material_override.set_texture(0, new_texture)
mesh.set_mesh(mesh_type)

mesh.set_visible(true)

stat.add_child(mesh)

As seen in the preceding example, first, the image texture is defined. Later,

we create a new spatial material and image texture. Then, the albedo material,
albedo color, and mesh type are set. Finally, a mesh is a subnode to a static

body.

Adding robotic game character

In this video game, we will have a moveable robotic game character. You can
find it as a created game scene (player.tscn). Instantiate the player scene,

and add a script file to it. The player scene has a collision capsule, robotic
mesh instance, and animation player. There are animations defined with an
animation player like walking, running, and jumping.

Use the move mode to put the robotic character on the early created path.
Then, experiment with a camera preview till you are satisfied.

Now, we can start with coding. First, let’s create gravity for a character as

shown in Figure 7.1. Look at the following example:
func _physics_process(_delta):
$”.” .move_and_collide(Vector3(0,-0.1,0))

Next, we will add one side movement:
if Input.is_action_pressed(“ui_right”):
$”.” .move_and_collide(Vector3(0.06,0,0))
if Input.is_action_just_released(“ui_right”):
$”."” .move_and_collide(Vector3(0,0,0))

Figure 7.1: Robotic game character

We need to set a proper position for the character and game ground.

We can rotate the character when the movement starts. We can use
predefined animations for the walking and idle states. For this, look at the

following example:

if Input.is_action_pressed(“ui_right”):
$”.”.set_rotation_degrees(Vector3(0,90,0))
$”.” .move_and_collide(Vector3(0.06,0,0))
$AnimationPlayer.play(“walk-cycle”)

if Input.is_action_just_released(“ui_right”):
$”.” .move_and_collide(Vector3(0,0,0))

$AnimationPlayer.play(“idle”)

if Input.is_action_pressed(“ui_left”):
$”.".set_rotation_degrees(Vector3(0,270,0))
$”.” .move_and_collide(Vector3(-0.06,0,0))
$AnimationPlayer.play(“walk-cycle”)

if Input.is_action_just_released(“ui_left”):
$”."” .move_and_collide(Vector3(0,0,0))
$AnimationPlayer.play(“idle”)

Environment for a 3D platformer

Usually, 3D games have thousands of 3D game assets. So, first, assets are
expensive, and second, we don’t have a learning space for this approach. So,
what will we do about the 3D game environment?

We can use scene instantiation and assets prototyping. First, we will create a
game scene with prototyping meshes, and then we will instantiate the scene n
times.

Nevertheless, we can create a scene with CSG nodes. For example, a house
with windows, doors, stairs, and a fence will be one of our game scenes. You
can add a game scene (3D_asset.tscn) with Godot IDE or use the GD
Script. But, first, load a scene:

var scene = load(“res://3D_asset.tscn”)

Next, add a few code lines for scene instantiation. Look at the following

example:

func _ready():
var scene_instance = scene.instance()
scene_instance.translate(Vector3(5, 1, -5))
add_child(scene_instance)

And finally, we can add many instantiate game scenes in a row. To do this,

the for loop is used, as shown in the following example:
func _ready():
for i in range(5, 35, 15):
var scene_instance = scene.instance()
scene_instance.translate(Vector3(i, 1, -5))
add_child(scene_instance)

Coding will create a few game scenes with a house and game surrounding, as
shown in Figure 7.2, in a row close to the game character path.

Now, we can make some changes and additions for coding.

Let’s study the following code example:
var scene = load(“res://3D_asset.tscn”)

var mov_cam = false
func _ready():
var m = 0
for n in range(-12,21,3):
game_path(n,m,Color.silver)
for n in range(-12,21,3):
game_path(n,-3,Color.greenyellow)
for i in range(5,35,15):
var scene_instance = scene.instance()
scene_instance.translate(Vector3(i,1,-5))
add_child(scene_instance)

func game_path(n,m,color):
var image = Image.new()
image.load(“res://texture_plastic.jpg”)
var stat = StaticBody.new()
var coll CollisionShape.new()
var shape = BoxShape.new()
shape.set_extents(Vector3(3,0.3,3))

var mesh = MeshInstance.new()
var mesh_type = CubeMesh.new()
mesh_type.set_size(Vector3(3,0.3,3))

var material = SpatialMaterial.new()
var new_texture = ImageTexture.new()
new_texture.create_from_image(image, 0)
material.albedo_texture = new_texture
material.albedo_color = color
mesh.set_material_override(material)
mesh.material_override.set_texture(0, new_texture)
mesh.set_mesh(mesh_type)
mesh.set_visible(true)
stat.add_child(mesh)

stat.add_child(coll)

.add_child(stat)
stat.set_translation(Vector3(n,0,m))

Figure 7.2: 3D platformer game environment

Changing the camera frame

Our camera is stationary. It will be wise to create some coding for the camera
frame change. For example, we can change the camera node position
depending on the game character:

extends Spatial

var scene = load(“res://3D_asset.tscn”)
var mov_cam = false
func _process(_delta):
if $Player.get_translation().x > 6.5 and mov_cam == false:
var get_cam_pos = $Camera.get_translation()
$Camera.set_translation(get_cam_pos + Vector3(6.5,0,0))
mov_cam = true

First, let’s define a boolean mov_cam. Then, we need to check the player
position and a Boolean value in a process function. Second, the camera node
position is received. Finally, we will change the camera node position. The
change depends on a previous position and some vector3 variable. Don’t
forget to change the Boolean value.

So, when the game character passes some position, the camera frame will
change. Now, we can add a few code lines when the game character is going

back. Let’s look at the following example:

if $Player.get_translation().x < 1.5 and mov_cam == true:
var get_cam_pos = $Camera.get_translation()
$Camera.set_translation(get_cam_pos + Vector3(-6.5,0,0))

mov_cam = false

It’s good to understand that the camera node changes position only when the
mov_cam value is true, which means the game character is in the next camera
frame.

Jump option for the game character

We can now create a jump option for our robotic game character. For now,
we have solved movement to the right and left. So, we needed a jump option
for a good gameplay.

The simplest solution will be to use the move and collide method with some

oposite value to game gravity. You can see this in the following example:

if Input.is_action_pressed(“ui_up”):
$”.” .move_and_collide(Vector3(0,0.21,0))
$AnimationPlayer.play(“jump-up-cycle”)

if Input.is_action_just_released(“ui_up”):
$AnimationPlayer.play(“idle”)

Nevertheless, this solution is more like flying. To create a jump effect, we
need to use something for ground detection.

So, we will use the RayCast node. Add a RayCast node to the root node in
the player scene. Also, rename a node to a JumpHeight. A node needs to be
enabled, and the translation values are -0.05x0.056x0.009.

Put the RayCast node below a game character if you create using your values.
It will work as a collision detector. Set the cast parameter to 0x-1.5x0.

Check it visually in 3D view, and then add some coding. You can test

colliding with few code lines. Look at the following example:
if $JumpHeight.is_colliding() == true:
print(“Colliding”)
else:
print(“Not Colliding”)

Now, we can add code lines for a jump option. Look at the following

example:

if Input.is_action_just_pressed(“ui_up”) and

$JumpHeight.is_colliding() == true:
$”.” .move_and_collide(Vector3(0,1.5,0))
$AnimationPlayer.play(“jump-up-cycle”)

if Input.is_action_just_released(“ui_up”):
$AnimationPlayer.play(“idle”)

Please test it and set jump parameters by game preference.

Game prop

Gameplay becomes the next logical task when you have a functional game
level. So, we will add some game props to our environment. But, first, let’s
create a new scene (GameProp) and add some nodes.

Add RigidBody to root node (name it also GameProp) with CollisionShape
and CSGBox (0.6x0.6x0.6). Set a proper collision shape scale (0.3x0.3x0.3).
Rigid body will be game object for picking or avoiding.

Next, add a script to the root node and Area node with the collision shape. Set
the collision shape scale to be a little wider (0.45x0.45x0.45) than a rigid
body’s.

Last, add a signal (body_shape_entered) to the Area node.

Now, we have a scene with a simple game prop. We need to instantiate it in
the main scene and add code for functionality.

The game prop will be instanced with code lines in the main scene (World).

Look at the following example:
extends Spatial

Loading game prop scene
var game_prop = load(“res://GameProp.tscn”)

func _ready():

Instancing a game prop
var prop_instance = game_prop.instance()
prop_instance.translate(Vector3(3,0.5,0))
add_child(prop_instance)

If testing is OK, you can add some color to the game prop to look like a
cardboard box. Also, some changes in the instantiating code will be
acceptable to generate more props. For example, look at the following code

lines:

#Instancing a game prop

for i in range(3,13,5):
var prop_instance = game_prop.instance()
prop_instance.translate(Vector3(i,0.5,0))
add_child(prop_instance)

Go to the player scene script and add a player name line:
extends KinematicBody

func _ready():
$AnimationPlayer.play(“idle”)
Setting a player name

.set_name(“Player”)

Nevertheless, we can now solve a code for game prop picking. In a

GameProp scene script, add the following lines:
func _on_Area_body_shape_entered(body_id, body, body_shape,
area_shape):
Picking a prop
if body.get_name() == “Player”:
.queue_free()

You can test your game and prop picking solution.

Initial gameplay

In 3D games, we have depth in graphics and the possibility for visual quality,
but still for every game, the gameplay is one of the essential elements.
Therefore, we can create some initial gameplay for the current learning
project - 3D platformer.

Our game projects are peaceful, so picking a game object and avoiding a
game object can be our option. However, when creating a game object for
picking, we need a defined collision shape and detection script. When
avoiding a game object is made, a collision shape is an option.

So, we can use the previously made game prop as a picking object.

And now, what can be our avoiding game prop? You can guess! Avoiding the
game prop will be where our game character can use the jump ability. As you
know, jump abilities are created and added to the player character.

Now, we can start creating a new game prop. But first, duplicate a
GameProps. tscn scene. To do this, open the scene and save it with a different
name. Use Save scene as from the Godot IDE main menu. Next, open a
newly created game scene and start with some necessary changes. Clear the
script for the root node and change a root node name to GameProp_jo. After
that, you need to add a new script.

Next, change a prop type from rigid body to static body. To do this, use the
context menu with the change Type option. The collision shape needs to be
after an object’s body and with a different size as shown in Figure 7.3:

Figure 7.3: Collision shape of an StaticBody

Check the signal for the Area node; you can disconnect it and connect it
afterwards. And finally, add some lines to the script. Look at the following

example:
extends Spatial

func _on_Area_body_shape_entered(body_id, body, body_shape,
area_shape):
if body.get_name() == “Player”:
.queue_free()
#$"”/root/singleton”.pts += 30

The code under comment can be enabled later when we set a scoring system.

Of course, you need to test the working of this newly added game prop. For
this to work, you can use the instantiation method explained earlier.

For the sake of initial gameplay, we can create a combination of two props.

Look at the following code example:
Instancing a game props
for i in range(3,13,5):

var prop_instance = game_prop.instance()
prop_instance.translate(Vector3(1i,0.5,0))
add_child(prop_instance)
var prop_instance2 = game_prop_jo.instance()
prop_instance2.translate(Vector3(i + 2,0.5,0))
add_child(prop_instance2)

Don’t forget to load the necessary scenes for this code to work. Look at the

following code example:
extends Spatial

var scene = load(“res://3D_asset.tscn”)
var mov_cam = false
var game_prop = load(“res://GameProp.tscn”)

var game_prop_jo = load(“res://GameProp_jumpover.tscn”)

Using texture for game objects

You need to make or obtain every asset for the 3D game, like a texture for a
game object. In the game prototyping, it’s ok to have colored objects, but
later on, textured objects become imperative. Therefore, let’s explain how to
change a colored game object to a textured one.

First, you need to put the texture file (ORANGE_BRICK DIFF.png) into the
resource folder for the current project. Then, we need to register this image
into video hardware by loading it properly. But before, we need a game
object. We can add one in the 3D_asset scene. So, we can create a CSGBox
node with 15 as width, 12 as height, and two as depth properties.

The node will be a wall game object because our texture simulates the wall
pattern. Next, add a new spatial material to the material property. Then, go to
the albedo sub-property and add an image for texture. After that, click on
load and select the PNG image from the resource folder. Check Figure 7.4,
and adjust game objects properly:

Figure 7.4: Textured game object with the wall pattern

Score system

Let’s create a scoring system for our 3D game. First, we need a global
variable, text label, and a way to calculate points. For a global variable, we

will use singletons.

So, create a new code script file. Put these predefined lines as shown in the

following example:
extends Node
var pts

func _ready():

pts = 0
We have a global variable for points, so let’s add a point calculation part. We
will add a code line (in signal function) in the props scene to do this. Look at

the following example:
extends Spatial
func _on_Area_body_shape_entered(body_id, body, body_shape,
area_shape):
print(“Entered: “ + str(body))
if body.get_name() == “Player”:
print(“Entered by player”)
.queue_free()
Calculating points with global var
$”/root/singleton”.pts += 10
And now, we only need to add one label node to the main scene. Select the
2D space tab, and add a label node. Put it somewhere in the top part of a
screen. Also, add code lines to a process function. Look at the following

example:
func _process(_delta):
if $”/root/singleton”.pts > 0:
$Score.set_text(“Points: “ + str($”/root/singleton”.pts))
We have all the necessary parts for a functional 3D video game. You can test
it and add some additional game space and game props.

Conclusion

We learned a lot about 3D game making. When you know how to create a
game character and game environment for a 3D game, you are ready for the
next chapter. In the next chapter, we will put our current knowledge to a
higher level. We will learn about level creation, 3D character making, NPC
making, and gameplay.

Questions

1. How can we code generate a 3D scene?
2. What are the elements of a 3D game environment?
3. Can you describe 3D prop making?

CHAPTER 8
3D RPG Adventure

Welcome! In this chapter, we are going a step forward with making a 3D
adventure. But, what does this mean?

First, in a role-playing game (RPG), the main character needs to have space
for leveling. Leveling is directly related to a quest system. When the story
obstacle (quest) is overcome, the main character gets experience points and
can level up.

Second, the adventure game includes Non-Playable Characters (NPC) with
limited abilities and options.

The preceding means that the developer needs at least two 3D game models
for the playable character (PC) and NPC. We will use the Main-Role
Character (MRC) as PC due to synonymous with a personal computer.

In developing an RPG, MRC is always visible, so it needs to be created.
When obtaining a game model for MRC or NPC, you can choose low or
high-poly models. In the current RPG adventure, we will use high-poly
models. High-poly models are 3D assets with a high polygon count.
Information about them is explained in the Chapter 5: 2D Adventure. A lot of
high-poly models will drain the computer performance of every computer, so
consider low-poly for beginner’s game projects. We will be fantastic with a
few moveable and a few more static 3D assets in our project.

And now, let’s try to understand the pros and cons of low and high poly 3D
game assets. With low-poly, you can make larger functional 3D maps with
more focus on animations and music. On the other hand, when you create a
game with high-poly assets, you need to think about hardware performance,
make smaller maps for functional game-play, and always consider proper
texture and lighting. And now, after this intro, let’s start with game planning.

Structure

In this chapter, we will discuss the following topics:

e Game level creation
e Main role character
¢ Non-player character creation and coding

Objectives

After studying this unit, you should be able to create an initial 3D game level
for an RPG adventure.

Game planning

We will plan three segments of RPG adventure: story, landscape, and
characters. In addition, the goal will be to plan elements for one playable
game map. The game story will tell us about MRC, what will be the
adventure area (landscape), and NPC. When creating a landscape,
prototyping will create desirable adventure areas easily. Characters can have
the same model base but different appearances for better game computing.

Story

In every story, characters are things to work on it. So, we will work on the
main character. Our MRC will be a human with two options for players: male
and female. He (she) will be someone who does not try to fit but expresses
himself (herself). We will not follow the cliches of games MRC, which
obliges every demand from NPCs. Our MRC will be free and will allow
others be free.

For example, MRC can have ideas for non-system living and how to realize
it. He (she) will then have some interaction with NPCs and logical puzzles
for resolving it. So, we will not use the avoid-obstacles method for a game-
play, but something like having connections and solving puzzles.

After interactions and puzzle-solving, MRC will receive experience points
and have foundations for a leveling up.

Level creation

And now, after a bit of theory, we will start with the Godot IDE and coding
for a functional game level. So, you know the drill; now, create a new game

project (3D RPG adventure) in ES 3.0 and the 3D game scene.

As you know, 3D game assets have 3 dimensions in the game space, and
there are many different formats for 3D game models. So, if we, for example,
want to put some quality 3D game objects in a game scene, we need to know
about these formats.

The game engine fully supports the gITF. This format holds data about, for
example, vertex and normals, but also some complex rendering data like
animations. When developers need size-light and simple objects to process,
the .gITF is a good choice. The gITF is a short form of Graphics Language
Transmission Format.

The fbx file format is not supported by Godot’s documentation, but there are
some experimental stages like fbx file formats importer. In addition, data is
stored as binary by fbx, thus making the format fast and efficient. It’s good to
know that the format holds data about model rigging and animation
information.

You can use the material property with the spatial material to add some
colors to game models, as shown in Figure 8.1:

Figure 8.1: Material property

The obj is the format with info about the vertex, normals, and UV data.

The .st1 is similar to .obj but with slightly fewer vertex data capabilities.

In our learning curve with 3D game assets, we will start with the .obj game
models. Go to the repository folder the 3D RPG Adventure and find the
GameCharacter obj file.

We will put it in the resource folder by drag and drop. Remember that two
windows must be visible for drag and drop to work correctly.

You can put the model in the newly created 3D scene by drag and drop. But
it’s good to know how to put a model with a mesh instance. So, first, add a
MeshInstance node to the scene. Then, select a node and use load mesh (you
can use cat_3d_model.obj file) to add a 3D game model to the scene.

Used .obj models are suitable for learning, but we can do more with some
other formats.

Game character

In the 3D RPG adventure, we will use human-like 3D game characters. We
can obtain 3D assets, or we can create them. A long learning path is creating
3D game assets, so that we will start with this approach.

What do you need to know about 3D game model making?

Game models are made from model base mashes, and model base mashes are
made from base mashes, like cubes or spheres.

To do this, you need an application for 3D modeling. A model base mesh is
created from a cube (base mesh) in such an application. From this asset base,
we created a game character.

Remember creating a 3D game model is not an easy task. You will need to
spend a lot of your time and energy learning 3D modeling applications.

Our game assets will be dynamic, especially for a game character and NPCs.
So, you need to know a few things about animations in the 3D game space.
There are parts in 3D modeling software for animation, or you can use
specialized programs.

In our creating path, we will use a game character with animation. This
means we first rigged a game model and added some animations. Usually,
rigging a game model defines a skeletal structure for animation (skeletal
animation).

Now, let’s practice as explained. First, go to the repository folder the 3D
RPG Adventure and find Young Woman - Better Collada - For Godot

Engine-.dae. Then, open the scene as new inherited. Next, add the camera
node, and set it in preview mode. Finally, save the scene as scene_first_ok.
Test the scene.

The game asset is rigged and has animations so that we can set it. Create a

new script file, and add the following code:
func _ready():
var anim =
get_node(“AnimationPlayer”).get_animation(“young_woman_walk")
anim.set_loop(true)
$AnimationPlayer.play(“young_woman_walk”)
It’s advisable to watch other animations stored with the AnimationPlayer
node. For example, select AnimationNode, select animation, and play

animations with micro buttons. Test it.

We can add more 3D assets to the game scene. First, create CSGBox as the
ground and color it (you can also color a game character). After that, add a
Trees2. tsc scene to the current one (Figure 8.2):

[i0 RPG Adventhus -;!ME

Figure 8.2: Young girl game model with added game assets

Intro scene

So, we can start creating an intro game scene. The scene will be dynamic, and
we already have active elements. But, first, we can make movement illusions
by changing the assets’ positions. We need to learn how to change a position
in the 3D game space for this to happen.

All the data about game element positions is stored as transform in a 3x3 data

type. All data is vector3 data for translation, rotation, and scale. Preceding
means that if we want to access data about the position in 3D space, we will
use the translation parameter.

Let’s see the following code example:

$trees.translation.z = -10

The resource (trees scene) will be given a translatory position on the Z-axis
by value. Then, we can put it in the ready function. So, let’s take a look at the

following example:
func _process(_delta):
if $trees.get_translation().z > -22:
$trees.translation.z += -0.01
else:
$AnimationPlayer.play(“young_woman_idle”)
In this example, our tree scene will change the translation in delta time for
some value. The change will happen if the condition is fulfilled. In a situation
when the condition isn’t, some animation will play. The best way to

understand an example is to see it, so test this.

As you can see, the game element changes its position, creating an illusion of
the MRC movement.

Now, we can add some text to the 3D scene. Writing text in a 2D design
window will add it. So, select the 2D micro button, and add the sprite node.
Next, find game_text.png in the repository folder, and set a scale correctly.

We will add a game button. Buttons for 3D games are added through 2D
design. So, add a textured button node, and set textures for normal
(btn_play.png) and hover states (btn_play_hover.png). Now, it’s an excellent
time to test and set this intro scene as shown in Figure 8.3:

Figure 8.3: Intro scene

Character movement

We will use the move and slide method for character movement. We will
explain two necessary parameters for the process to work. The first will
define the direction, and the second will define the up position in 3D game

space, as shown in the following example:
$KinematicBody.move_and_slide(direction, Vector3.UP)

Now, let’s CharOverride-12define the direction. We will use the Z-axis for
the coding movement, and the value of 1 will be forward, and the value of -1
will be backward. Go to the project settings input map and define two keys:
one for forward (W) and one for backward (S).

So, we can add some coding now:
onready var direction

func _ready():
initial direction
direction = Vector3(0,0,0)
func _process(_delta):
if Input.is_action_pressed(“forward”):
direction.z = -1
if Input.is_action_just_released(“forward”):
direction.z = 0
if Input.is_action_pressed(“backward”):
direction.z = 1
if Input.is_action_just_released(“backward”):
direction.z = 0

We have the direction defined, so we can set object rotation while going in a

different direction. For this, let’s see the following example:

if direction.z == 1:
$KinematicBody.set_rotation_degrees(Vector3(0,0,0))

if direction.z == -1:
KinematicBody.set_rotation_degrees(Vector3(0,180,0))

When you need data about rotation in degrees, use the following code part:
var ro = $KinematicBody.get_rotation_degrees()
print (ro)

And the next is rotation; for this to happen, add the following code:
if direction.z == 1 or direction.z ==-1:
anim.set_loop(true)
$AnimationPlayer.play(“young_woman_walk”)
else:
anim.set_loop(true)
$AnimationPlayer.play(“young_woman_idle”)

With all this correctly put, we can test a game scene.

You can create a movement to the left and right now. But, first, you will
define keys in settings, A for left and D for right. So, now you will have a
WASD scheme for the movement keys.

Next is coding, but now you need to define data for the X-axis. For this, see

the following example:

if Input.is_action_pressed(“left”):
direction.x = -1

if Input.is_action_just_released(“left”):
direction.x = 0

if Input.is_action_pressed(“right”):
direction.x = 1

if Input.is_action_just_released(“right”):
direction.x = 0

After that, you need to put code lines for character facing with rotation. See

the following example:

if direction.x == -1:
$KinematicBody.set_rotation_degrees(Vector3(0,-90,0))

if direction.x == 1:
$KinematicBody.set_rotation_degrees(Vector3(0,90,0))

And, one more thing, animation setting. For this to be properly done, let’s

take a look at the following example:
if direction.z == 1 or direction.z ==-1 or direction.x == 1 or
direction.x == -1:

anim.set_loop(true)

$AnimationPlayer.play(“young_woman_walk”)
else:

anim.set_loop(true)
$AnimationPlayer.play(“young_woman_idle”)

So, now you have solved movement in 3D space with walking animations.

RPG third-person movement style

We will continue working on 3D movement. So, let’s learn how to create a
3rd person view and improve the game movement for MRC. There are many
approaches for this, with many code lines, but let’s try something compact.

First, we will resolve 3rd person view with a camera and the SpringArm node.
Select MRC (KinematicBody) and add SpringArm. Next, add a camera node
to SpringArm. You need to set the camera as current. Move SpringArm
behind MRC, and put a camera above with slight down rotation, as shown in
Figure 8.4. It’s wise to check the camera view with the camera preview
option. For example, the transform for SpringArm is 0,1.468 and -5. With this
correctly done, we have the third-person view:

Figure 8.4: SpringArm and camera

Second, we will change the code lines. Let’s take a look at the following
example:

func _process(_delta):

get_input()

direction = direction.normalized()
$KinematicBody.move_and_slide(direction, Vector3.UP)

In the process function, we will normalize the direction, and use the move
and slide method. All the input will be resolved in a get_input function. The
previous code can be put under comment if you like to keep it or delete it.

As shown in the following example, we will create a user input function:
onready var speed = 1

onready var anim =
get_node(“AnimationPlayer”).get_animation(“young_woman_walk"”)
onready var direction

func get_input():

direction.z = 0

direction.x = 0

var diry = direction.y

direction = Vector3()

if Input.is_action_pressed(“forward”):
direction += $KinematicBody.transform.basis.z * speed

if Input.is_action_pressed(“backward”):
direction += -KinematicBody.transform.basis.z * speed

if Input.is_action_pressed(“left”):
$KinematicBody.rotate_y(0.03)

if Input.is_action_pressed(“right”):
$KinematicBody.rotate_y(-0.03)

if direction.z != 0 or direction.x != 0O:
anim.set_loop(true)
$AnimationPlayer.play(“young_woman_walk")

else:
anim.set_loop(true)
$AnimationPlayer.play(“young_woman_idle”)

direction.y = diry

We will use local game object values with rotate_y and transform.basis
for creating the movement. The rotation for the movement is on the Y-axis.
The rotation data is stored in the diry variable. So, the game character
direction will be with local space z values as shown in the following
example:

direction += $KinematicBody.transform.basis.z * speed

The animation will play if any axis data is above 0; look at the following

example:
if direction.z != 0 or direction.x != 0:
anim.set_loop(true)

$AnimationPlayer.play(“young_woman_walk”)
Now, you can test a game scene.

We have a functional code for the third-person movement needed for our
RPG adventure game project. If you would like to use a mouse for rotation,

you need to add the following code example:
func _unhandled_input(event):
if event is InputEventMouseMotion:
KinematicBody.rotate_y(-lerp(0,0.1,event.relative.x/10))

In this situation, you can create a strafe left and strafe right as shown in the

following example:

if Input.is_action_pressed(“left”):
direction += $KinematicBody.transform.basis.x * speed
#$KinematicBody.rotate_y(0.03)

if Input.is_action_pressed(“right”):
direction += -$KinematicBody.transform.basis.x * speed
#$KinematicBody.rotate_y(-0.03)

Initial game-play

Let’s start with a game-play creation. We already have a play button so that
we can add coding. First, create a button press function with a signal, and add

the following code:
func _on_TextureButton_pressed():
$KinematicBody/SpringArm/CameraChar .make_current()

Second, make the initial camera the current from the IDE. Next, we need to
set a singleton variable for enabling or disabling the movement of an MRC.

Create a singleton.gd file. You can add some code lines, as shown in the

following example:
extends Node
onready var game_start

func _ready():
game_start = false

And now, you can add this variable to coding files, as shown in the following

example:
func _process(_delta):
if $”/root/singleton”.game_start == true:
get_input()
direction = direction.normalized()
$KinematicBody.move_and_slide(direction, Vector3.UP)

func _on_TextureButton_pressed():

$KinematicBody/SpringArm/CameraChar .make_current()
$”/root/singleton”.game_start = true
Test this. We can start with NPC creation now because we have the correct
initial gameplay.

NPC for adventure

We will use one of the previously created 3D game characters. Find the
npc. tscn file in the repository folder for this game project. In the npc game
scene, we will have a game character with idle animation and a few game
props. The set has a script for enabling idle animation and CSG elements for
game props.

Instance the npc game scene on our main stage, as shown in Figure 8.5:

Ll — | = S

Figure 8.5: Instanced npc in game scene

The NPC in the game will have an idle animation and few actions when
MRC interacts. Game characters and props in the npc scene have a collision
shape, but you can check it by playing in it. We will use the area3D node for
interaction. You can add the area node and box collision shape as a subnode.
Put the collision shape in front of NPC so the interaction can happen. You
can add a few code lines to test the collision shape, but don’t forget to create

a function with a signal. See the interaction test in the following example:
func _on_Interaction_area_body_shape_entered(body_id, body,
body_shape, area_shape):

print(“Something entered!”)

This interaction script is good when you have one character moving around.
However, it’s good to use game object names in situations with more
moveable game objects.

MRC interaction

Now, we have an MRC and one NPC. So, we can create exciting interactions.
Talking between game characters is one of the fundamental interactions in
every RPG game. We will make speaking interactions with a few options.
For example, we can use greetings.

First, set your Godot IDE to the 2D view and start with nodes adding. Next,
find an interaciton_panel.png file in the project repository, and use it as
texture for the sprite node. Don’t forget to add a sprite2D node first. Set this
image file to cover the game screen. Click on visibility once (need to be
hidden). Next, add two flat buttons as subnodes. Set the text for the first
button as Hello and Thank you. Goodbye for the second. Also, add a label
above, as shown in Figure 8.6. So, you will have the interaction_panel
sprite node and three subnodes:

2] Thani you. Goodiye

Figure 8.6: Labels position for interaction texts

Second, we need to do coding for the interaction panel and buttons. We will
enable and disable panel visibility, and we can create signals for switches.

So, let’s create one singleton variable for the interaction panel. For example,
the variable interaction_panel can be used, as shown in the following code

example:

extends Node

onready var game_start
onready var interact_panel

func _ready():
game_start = false
interact_panel = false

Next, we can add code lines for collision with the interaction game object. Go

to the npc scene script, and set the code as shown in the following example:
extends KinematicBody

func _ready():
$AnimationPlayer.play(“idle”)

func _on_Interaction_area_body_shape_entered(body_id, body,
body_shape, area_shape):
print(“Something entered!”)
$”/root/singleton”.interact_panel = true

func _on_Interaction_area_body_shape_exited(body_id, body,
body_shape, area_shape):
$”/root/singleton”.interact_panel = false

Now, go back to the first scene ok, and create a signal for buttons. After
that, we need to add code lines to the script, as shown in the following

example:
func _process(_delta):
if $”/root/singleton”.game_start == true:
get_input()
direction = direction.normalized()
$KinematicBody.move_and_slide(direction, Vector3.UP)
#$1bl Rotation.set_text(
str($KinematicBody.get_rotation_degrees()))
if $”/root/singleton”.interact_panel == true:
$Interact_panel.set_visible(true)
else:
$Interact_panel.set_visible(false)
func _on_btn_hi_pressed():
$Interact_panel/lbl_text.set_text(“Hello”)
func _on_btn_gb_pressed():
$Interact_panel/lbl text.set_text(“Goodbye”)

So now, you can test the game interaction. If everything is put right, you will
have the solution for talking interaction in an RPG game. The interaction

panel is visible only when MRC approaches NPC, and in-game talking is
done with a button node and one label node.

Conclusion

You learned about MRC and NPC creating a process for an RPG adventure-
type video game. We made an entire movement in the 3D game space and
animated different movement types. Chapter know-how will help us create
more exciting and complex game elements such as inventory and save
systems in the book’s next chapter - Game Systems in the 3D RPG
Adventure. Readers will have the opportunity to learn about game systems
such as game save system and game inventory systems. Mentioned game
systems will give the necessary elements for a good 3D game.

Questions

1. Why do we create MRC at the beginning of the 3D game?
2. What is NPC in a 3D RPG game?

3. How to create an interaction in the 3D game space?

CHAPTER 9
Game Systems in a 3D RPG Adventure

A 3D RPG game is technically demanding. Therefore, this chapter will
explain two game systems for the previously created game. First, we will
learn how to create a game inventory system. Later, the save method will be
described, and finally, we will introduce the know-how to create a standalone
game project.

So, what is a game inventory system? One of the popular traits for RPG is a
game object inventory. Things needed for players and quest solving are put in
different game container types like bags, chests, or shelves. Then, the player
can arrange them or transfer them from one container to another.

As you can guess, this chapter will introduce some of the most advanced uses
of the GD Script. We will work with different variables, arrays, loops, and
conditional branching to create a game inventory system and save system for
our 3D RPG adventure.

You will need a lot of resource files from the repository folder of this game
project. So, can you find it before we start with coding?

Structure

In this chapter, we will discuss the following topics:

e (Game inventory system

e Game inventory functionality

Inventory system implementation

Save system

Game publishing

Objectives

After studying this unit, you should be able to design and code a game

inventory system and save system for a video game. You will also learn how
to publish video games.

Game inventory system

First, let’s explain how we will create an exciting inventory system. We will
use grid container nodes and textured buttons as a base for the game
inventory system. We will code almost everything, so the only things you can
do in the IDE are make a new scene and add two nodes.

So, add a grid container and a sprite2D node.
All coding will be in a root node. Add a script.

First, let’s see the necessary variables in the following example:

extends Spatial

onready var texture = preload(“res://invent_field.png”)

onready var fields =

[0’ "if_j.", "if_2", "if_?)", "if_4”, Ili.f:_5n, "if_6", ”if_?”, "if_8", Ilif_gl
onready var btn

export var fields_in_line = 4

export var no_of_fields_MAX_ 12 = 4

export var vert_pos = 360
onready var inv_elelent_1
onready var inv_elelent_2
onready var inv_elelent_3
onready var eleinfield_1

onready var eleinfield_2

onready var eleinfield_3

onready var field_state =
[1/0"’ "knive", "SOlar", "bOttle", Ilnt”, "nt", "nt", "nt", "nt", Ilnt"’ IIntII‘
onready var mouse_pos

onready var calc_pos = false

onready var click_state = 0

onready var moving_obj

onready var moving_obj_image

preload(“res://inv_element_1.png”)

preload(“res://inv_element_2.png”)

preload(“res://inv_element_3.png”)
preload(“res://eleinfield_1.png”)
preload(“res://eleinfield_2.png”)
preload(“res://eleinfield_3.png”)

Few variables will be used as texture links as shown in Figure 9.1:

empty field an item an item in field

texture inv_elelent eleinfield
invent_field.png inv_element_ .png eleinfield .png")

Figure 9.1: Texture for textured buttons as item containers

Now, we can explain these variables. First, preloaded image files will be used
as a texture for textured button nodes. The initial texture for a button will be
from the var texture when an item is in the inventory field; we will use var
eleinfield, and to move an object, we will use the var inv_elelent as
shown in Figure 9.1.

Secondly, every button we create will have a different name. Button names
are in the fields array. The maximum number of fields is in an export variable
- no_of_fields_MAX_12. Therefore, we can now see the code for button

creation in the following example:

for 1 in range(1, no_of_fields_MAX_12):
btn = TextureButton.new()
btn.set_position(Vector2(i, 0))
btn.set_normal_texture(texture)
btn.set_name(fields[i])
var btn_txt = “pressed_” + str(fields[i])
btn.connect(“button_down”, self,btn_txt)
$GridContainer.add_child(btn)

We use a grid container node with a defined number of columns in the
field_in line var. So, now our ready function looks like the following

example:

func _ready():
if no_of_fields_MAX_12 > 12:

fields_in_line = 12

$GridContainer.set_columns(fields_in_line)
$GridContainer.set_position(Vector2(0,vert_pos))
print_tree()
generate textured buttons as inventory fields
for i in range(1, no_of_fields_MAX_12):

btn = TextureButton.new()
btn.set_position(Vector2(i, 0))
btn.set_normal_texture(texture)
btn.set_name(fields[i])

var btn_txt = “pressed_” + str(fields[i])
btn.connect(“button_down”, self, btn_txt)
$GridContainer.add_child(btn)

And now, we can add items to the inventory, as shown in the following

example:

Adding some element in the inventory
$GridContainer/if_1.set_normal_texture(eleinfield_1)
field_state[1] = “knive”
$GridContainer/if_2.set_normal_texture(eleinfield_2)
field_state[2] = “solar”
$GridContainer/if_3.set_normal_texture(eleinfield_3)
field_state[3] = “bottle”

We use the previously generated names of buttons to address item inputs.

Game inventory functionality

The game system functionality! This part can be tricky to solve and explain,
so we will go slow.

First, we will add defined functions when the buttons are pressed:
func pressed_if_1():
about_field(1)
func pressed_if_2():
about_field(2)
func pressed_if_3():
about_field(3)
func pressed_if_4():
about_field(4)
func about_field(no):
print(“In field no “ + str(no) + “: “ + str(field_state[no]))

Next, we will use a conditional branch to check the state of a field and var for

the movement state defined as the click_state var:

Check if an item is in the item field

if field_state[no] !="" and click_state ==
if field_state[no] == “knive”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(texture)
moving_obj = “knive”
$inv_image.set_texture(inv_elelent_1)

The previous code example checks the item, and if an item is appropriate, the

field becomes empty by changing the button texture. Later, the moving object
is defined, and the moving image has adequate texture. Sprite textures are
shown in Figure 9.2:

Figure 9.2: Sprite texture for moving item image

We also need to set the moving image visibility to calculate the position of
the moving item, and define the field state. So, our code part now looks like

the following example:
if field_state[no] !="" and click_state ==
if field_state[no] == “knive”:
.get_node(“GridContainer/”
+str(fields[no])).set_normal_texture(texture)
moving_obj = “knive”
$inv_image.set_texture(inv_elelent_1)
$inv_image.set_visible(true)
calc_pos = true
click_state = 1
field_state[no] = “nt”

When we calculate the mouse position (calc_pos var) for a moving item, the
process function is essential. Look at Figure 9.2. Therefore, we set the code
as shown in the following example:
func _process(_delta):
if calc_pos == true:
mouse_pos = get_viewport().get_mouse_position()
inv_image.set_position(Vector2(mouse_pos.X,mouse_pos.y))

Our click_state var is now 1, and we can code the script for setting a
moving item at the chosen inventory field. So, let’s see the following

example:
if field_state[no] == “nt” and click_state ==
if moving_obj == “knive”:

.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(eleinfield_1)
field_state[no] = “knive”

$inv_image.set_visible(false)

calc_pos = false

click_state = 3

moving_obj = “nt”

If the field is empty (var value is nt) and if an object is defined (knive), we
put some parameters. First, the texture of the field is changed to a moving
object. After that, the field state is changed (to a moving object). Moving an
object is not visible because the movement is done. Now, our code will look

like the following example:
func about_field(no):
print(“In field no “ + str(no) + “: “ + str(field_state[no])
)
print(“Click state is: “ + str(click_state))
if field_state[no] == “nt” and click_state ==
if moving_obj == “knive”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(eleinfield_1)
field_state[no] = “knive”
$inv_image.set_visible(false)
calc_pos = false
click_state = 3
moving_obj = “nt”
if field_state[no] !'="" and click_state ==
if field_state[no] == “knive”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(texture)
moving_obj = “knive”
$inv_image.set_texture(inv_elelent_1)
$inv_image.set_visible(true)
calc_pos = true
click_state = 1
field_state[no] = “nt”
if click_state ==
click_state = 0

We can add a few more code lines to resolve the movement of other item
types. For example, let’s see the following code part:

if field_state[no] == “nt” and click_state ==

if moving_obj == “solar”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(eleinfield_2)
field_state[no] = “solar”

if moving_obj == “bottle”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(eleinfield_3)
field_state[no] = “bottle”

$inv_image.set_visible(false)

calc_pos = false

click_state = 3

moving_obj = “nt”

A similar code can be added when the click_state is 0. So, let’s take a look

at the following example:

if field_state[no] == “solar”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(texture)
moving_obj = “solar”
$inv_image.set_texture(inv_elelent_2)

if field_state[no] == “bottle”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(texture)
moving_obj = “bottle”
$inv_image.set_texture(inv_elelent_3)

We have the necessary elements for the item inventory script, and you can

see them in the following example:
extends Spatial

onready var texture = preload(“res://invent_field.png”)

onready var fields =

[0, ”if_].", "if_2", Ilif_slll ”if_4”, Ilif_slll Ilif_GII, Ilif_7lll ”if_8", Ilif_gl
onready var btn

export var fields_in_line = 4

export var no_of_fields_MAX_12 = 4

export var vert_pos = 360

onready var inv_elelent_1 = preload(“res://inv_element_1.png”)
onready var inv_elelent_2 = preload(“res://inv_element_2.png”)
onready var inv_elelent_3 = preload(“res://inv_element_3.png”)
onready var eleinfield_1 preload(“res://eleinfield_1.png”)
onready var eleinfield_2 preload(“res://eleinfield_2.png”)
onready var eleinfield_3 preload(“res://eleinfield_3.png”)
onready var field_state =

[//0"’ ”knive”, "SOlar”, ”bOttle”, IlntII, Ilntlll ”nt”, ”nt”, ”nt”, IIntII’ "nt",
onready var mouse_pos

onready var calc_pos = false

onready var click_state = 0
onready var moving_obj
onready var moving_obj_image
func _ready():
if no_of_fields_MAX_12 > 12:
fields_in_line = 12
$GridContainer.set_columns(fields_in_line)
$GridContainer.set_position(Vector2(0,vert_pos))
print_tree()
generate textured buttons as inventory fields
for 1 in range(1, no_of_fields_MAX_12):
btn = TextureButton.new()
btn.set_position(Vector2(i, 0))
btn.set_normal_texture(texture)
btn.set_name(fields[i])
var btn_txt = “pressed_” + str(fields[i])
btn.connect(“button_down”, self,btn_txt)
$GridContainer.add_child(btn)
Adding some element in the inventory
print_tree()
$GridContainer/if_1.set_normal_texture(eleinfield_1)
field_state[1] = “knive”
$GridContainer/if_2.set_normal_texture(eleinfield_2)
field_state[2] = “solar”
$GridContainer/if_3.set_normal_texture(eleinfield_3)
field_state[3] = “bottle”
func _process(_delta):
if calc_pos == true:
mouse_pos = get_viewport().get_mouse_position()
$inv_image.set_position(Vector2(mouse_pos.X,mouse_pos.y))
if $”/root/singleton”.gridc_visible == true:
$GridContainer.set_visible(true)
else:
$GridContainer.set_visible(false)
func pressed_if_1():
about_field(1)
func pressed_if_2():
about_field(2)
func pressed_if_3():
about_field(3)
func pressed_if_4():
about_field(4)
func about_field(no):
print(“In field no “ + str(no) + “: “ + str(field_state[no])

)
print(“Click state is: “ + str(click_state))
if field_state[no] == “nt” and click_state ==

if moving_obj == “knive”:

.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(eleinfield_1)
field_state[no] = “knive”

if moving_obj == “solar”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(eleinfield_2)
field_state[no] = “solar”

if moving_obj == “bottle”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(eleinfield_3)
field_state[no] = “bottle”

$inv_image.set_visible(false)

calc_pos = false

click_state = 3

moving_obj = “nt”

if field_state[no] !="" and click_state ==

if field_state[no] == “knive”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(texture)
moving_obj = “knive”
$inv_image.set_texture(inv_elelent_1)

if field_state[no] == “solar”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(texture)
moving_obj = “solar”
$inv_image.set_texture(inv_elelent_2)

if field_state[no] == “bottle”:
.get_node(“GridContainer/"” +
str(fields[no])).set_normal_texture(texture)
moving_obj = “bottle”
$inv_image.set_texture(inv_elelent_3)

$inv_image.set_visible(true)

calc_pos = true

click_state = 1

field_state[no] = “nt”

if click_state ==
click_state = 0

Inventory game system implementation

It’s good to add an inventory system scene to our main scene. We can do it
with the IDE. Also, we need to add a variable for inventory system visibility.
We add a gridc_visible var to the singleton script. In-game implementation
is shown in Figure 9.3:

Figure 9.3: Implemented game inventory system

Now, set the start value in the ready function, as shown in the following

example:
func _ready():
direction = Vector3(0,0,0)
anim.set_loop(true)
$AnimationPlayer.play(“young_woman_idle”)
$”/root/singleton”.gridc_visible = false
Also, add a value defined in the start game function, as shown
in the following example:
func _on_TextureButton_pressed():
$KinematicBody/SpringArm/CameraChar .make_current()
$”/root/singleton”.game_start = true
$”/root/singleton”.gridc_visible = true

And now, you can start with testing and troubleshooting the inventory
system. After the intro scene, we will have a functional inventory system
when the coding is correct.

Game save system

Usually, a video game has an option to save the player’s progress so that the
player can continue later. There are big games with many save slots. We will
create a save system for different data types. Our system will have save slots.

Let’s start with the new user interface scene. First, rename the root node to
save system. Then, add a script to the root node. Add the center container and
vertical box container as a subnode. Later, you can add one label and a few
button nodes. Set custom constants separation to 9 at the inspector window of
the vertical box container.

And now, coding. We will temporarily store data in an array, and for the save
system, we can use a .dat or .txt file. As shown in the following example,

let’s set some variables for file node, save path, and save content:
extends Control

var file
var content = [0,3,”text”,9,”Some test text.”]
var path
First, we will create code for saving content data.
func _ready():
file File.new()
path = “C://save_game.dat”
user://save_game.dat path is at user appdata Godot project
data
C://save_game.dat can be used at Windows system at root
directory
file.open(path, File.WRITE)
for 1 in range(0,len(content)):
file.store_line(str(content[i]))
file.close()

As you can see, the array data is in different lines of a .dat file. So, when
using a file node, it’s imperative to use the close method in the end. So, we

first open a file in a defined path in the previous example. Later, data is
stored with the store_line method, and we close a file in the end.

The next step is retrieving data. Let’s look at the following example:
file.open(path, File.READ)
for _i in range(0,len(content)):
var pr = file.get_line()
print(pr)
file.close()
We open the file, read it line by line, and print it in the output window. You

can code to put each line in array fields.

Now, we will add the save script to one of the buttons. Select the first button,
create a signal, and put the previously created script as shown in the

following example:
func _on_save_slot_1 button_down():

file File.new()

path “C://save_game.dat”

file.open(path, File.WRITE)

for i in range(0,len(content)):
file.store_line(str(content[i]))

file.close()

Set the script according to your system. Later, you can add the scene to the
main scene. As a game developer, you will understand what and how in the
world of video game creation.

Game publishing

One of the great Godot traits is game publishing. You only need to define a
system for gameplay, and other things are primarily automatic.

First, the game needs to have the initial scene defined. For this, go to project
settings and set the main scene in the run tab. Then, go to the config file and
put the game icon. Optionally, you can set (width/height) gametext.png as a
bootsplash image.

Second, go to the project export. Add the operating systems. Next, go to
manage export templates if you didn’t set it before. You will have the option
to download the necessary files.

And that’s all, set the project name and export location and click on the
export project.

Exported files will work on a defined operating system. If you decide to
create a web game with an HTML5 exporter, you will need additional
settings in the web location. The game publishing dialog is shown in Figure
9.4:

B HTMLS (Runnable)

‘_..

Figure 9.4: Game publishing dialog

When exporting files, you can optionally set if you need the debug files or
not.

Conclusion

The 3D RPG Adventure project teaches how to create some of the most
demanding video games for the Godot game engine. The engine can solve
many 3D objects and movements in 3D space, but it’s wise to understand the
limits. The inventory and save system are a vital part of many quality video
games, so it’s good to understand them and modify them for the project
needs.

This learning and playing journey are close to its end. But every ending is a
new beginning. You can continue with learning paths from my other books or
start with a game project. A suggestion is to combine learning (books, video
tutorials) with game creation. Start with a 2D game, and when you create it
entirely, work on improvements. You can learn a lot in the 2D game creation
process. Then, with a large know-how base, you will have many options in
2D and 3D game development with the Godot game engine.

Questions

1. What are the essential nodes for the inventory system we used?
2. What’s the way to create many nodes?
3. Which method do we use to reference user-defined nodes?

Symbols

2D adventure 73
2D character 56, 57
complex game props 64, 65
custom game prop 66, 67
ethics, coding 61
game menu 70, 71
game play-ability 61, 62
game props, creating 58-60
generated custom prop 67-69
simple game prop 63
troubleshooting 60
2D game
creating 55, 56
2D game environment 57, 58
2D Game Math 37, 38
controlled movement 38, 39
game props, creating 39
2D node properties
global position 33
repetition 34, 35
scale 31, 32
transform 32
z index 33, 34
2D Physics 41
class static body 2D 41
RigidBody2D 43-45
3D game
creating 91
material texture 100
3D game IDE 92, 93
3D game object
creating, with script 93-97
3D models
in game scene 98-100
3D Physics 91

Index

3D platformer 109
camera frame, changing 117, 118
character design 111
environment 115, 116
game prop 119-121
game scene, preparing 111-113
initial gameplay 121-123
intuitive planner 110, 111
jump option, creating for game character 118, 119
planning 110
robotic game character, adding 113, 114
scoring system, creating 124, 125
texture, using for game objects 123, 124
3D RPG adventure
character movement 133-136
game characters 131, 132
game planning 128
game systems 145
intro scene 132, 133
level creation 129, 130
MRC interaction 141-143
NPC 139, 140
story 128, 129
third-person movement style 136-139
3D scene
creating 92
3D video game
game props, for intro scene 104, 105
intro scene 105, 106
prototyping 101, 102

A

area description 82, 83
array 26-28

B

bounce 43

C

character movement 133-136

class 2D node 12
position 12, 13
repetition 14
rotation 13, 14
scale 14-16
tasks 14
complex game props 64, 65
constant angular velocity 42
constant linear velocity 41, 42
Constructive Solid Geometry (CSG)
prototyping 102-104
continuous collision detection 47
modes 48
custom game prop 66, 67

D

dictionary 29-31

E

environment 115, 116
ethics, coding 61

F

for loop 20, 21
function 25, 26
friction 42

G

game
publishing 159, 160
game inventory system 145-149
implementation 156, 157
game menu 70, 71
game play-ability 61, 62
game props, creating 58-60
game save system 158, 159
game system functionality 149-153
GD script 11, 12
GDScript, in programming

array 26-28

dictionary 29-31

for loop 20, 21

function 25, 26

if else 22, 23

match command 23, 24

while loop 18-20
generated custom prop 67-69
Godot

URL 3
Godot node system 9, 10

H

Hello World example
creating 6-9
with Godot 3-6

I

if else 22, 23
initial gameplay 121-123
intro scene 132, 133

intuitive planner 110, 11

—

J

jump option
creating, for character 118, 119

L

level creation 129, 130
linear damp 50
linear velocity 49

M

Main-Role Character (MRC) 127
mass, RigidBody2D 45

match command 23, 24

mesh 93

modes, RigidBody2D 45

MRC interaction 141-143

N

node2D properties 17
Non-Playable Characters (NPC) 127, 139, 140

P

physics material override 46
player character 86-90

R

Randf 40
Randi 40
Randomize 41
rand range method 40
rand seed 40
RichTextLabel 83
RigidBody2D 43-45
adding, with GDScript 50-52
adding, with Godot IDE 50
bounce 46
contact monitor 49
contact reported 48
continuous collision detection 47, 48
custom integrator 47
friction 46
gravity scale 47
inertia 45
linear damp 50
linear velocity 49
mass 45
modes 45
physics material override 46
recapitulation 50
weight 45
robotic game character 113, 114
role-playing game (RPG) 127
RPG (Role Played Games) 84

S

set_position() method 78
StaticBody2D 41
bounce 43
constant angular velocity 42
constant linear velocity 41, 42
friction 42
physics material override 43

T

TileMap 74
troubleshooting 60
turn-based game-play 73-75
2D platformer, as part of quest system 83-86
area description 82, 83
game character movement 75-78
gameplay 79-82
player character 86-90

U

uni function 77

V

video game math 37

W

while loop 18-20
W-S-A-D keyboard keys 92

Z
z index 33, 34

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Introduction
	Welcome
	Word to game developer
	Encouraging at the beginning
	Hello World example
	Godot node system
	GD script
	Class 2D node
	Position
	Rotation
	Repetition
	Tasks
	Scale

	2. Towards 2D Game
	GDScript in programming
	While loop
	for loop
	If else
	Match
	Function
	Array
	Dictionary

	Class 2D node (scale, transform, and global)
	Scale
	Transform
	Global position
	Z index
	Repetition

	3. Making 2D Games
	2D Math
	Controlled movement
	First game props

	2D Physics
	Class static body 2D
	RigidBody2D

	Recapitulation
	Adding RigidBody2D with Godot IDE
	Adding RigidBody2D with GDScript

	Conclusion
	Questions

	4. Creating a 2D Game
	2D character
	2D game environment
	Creating game props
	Troubleshooting
	Coding ethics
	Better game play-ability

	Conclusion
	Questions

	5. 2D Adventure
	Turn-based game-play
	Game character movement
	Gameplay
	Textual description of the area
	2D platformer as part of a quest system
	Player character

	Conclusion
	Questions

	6. 3D Math and 3D Physics
	Introducing the 3D game IDE
	Creating a 3D game object with a script
	3D models in a game scene
	Material texture
	Prototyping a 3D video game
	Prototyping with CSG
	Game props for the intro scene
	Purpose of an intro scene
	Conclusion
	Questions

	7. Project: 3D Platformer
	Planning a 3D platformer
	Intuitive planner
	Character design
	Preparing a game scene
	Adding robotic game character
	Environment for a 3D platformer
	Changing the camera frame
	Jump option for the game character
	Game prop
	Initial gameplay
	Using texture for game objects
	Score system
	Conclusion
	Questions

	8. 3D RPG Adventure
	Structure
	Objectives
	Game planning
	Story
	Level creation
	Game character
	Intro scene
	Character movement

	RPG third-person movement style
	Initial game-play
	NPC for adventure
	MRC interaction
	Conclusion
	Questions

	9. Game Systems in a 3D RPG Adventure
	Structure
	Objectives
	Game inventory system
	Game inventory functionality
	Inventory game system implementation
	Game save system
	Game publishing
	Conclusion
	Questions

	Index

